Two numbers are in the ratio 7:4. If their difference is 72, find the numbers About the author Athena
Answer : The numbers are 168 and 96 Given : Two numbers are in the ratio is 7:4 Difference is 72 To find : The numbers Solution : Let the first number be 7x Let the second number be 4x Given that, the difference is 72 so, According to Question, 》7x – 4x = 72 》3x = 72 》x = 72/3 》x = 24 Then, First number = 7x = 7(24) = 168 Second number = 4x = 4(24) = 96 Hence, The numbers are 168 and 96 Verification : 》7x – 4x = 72 》7(24) – 4(24) = 72 》168 – 96 = 72 》72 = 72 Hence verified Reply
[tex] \mathfrak {Given}\begin{cases} \sf \: Two \: numbers \: are \: in \: the \: ratio \: \bold{7 : 4}. \\ \\ \sf Difference \: of \: those \: numbers \: is \: \bold{72}.\end{cases}[/tex] Need to find : Those numbers. ⠀⠀⠀⠀⠀⠀____________________ Let the numbers be 7k and 4k respectively. [tex] \: \: [/tex] It is given that their difference is 72. [tex] \: \: [/tex] [tex] \mathfrak{ \underline{ \bigstar \: substituting \: the \: values \: : }}[/tex] [tex] \: [/tex] [tex] \sf : \implies \: 7k – 4k = 72 \\ \\ \\ \sf : \implies3k = 72 \\ \\ \\ \sf : \implies \: k = \cancel\frac{72}{3} \\ \\ \\ \: \sf : \implies \underline{\boxed{\mathfrak\pink{k = 24}}} \: \bigstar[/tex] [tex] \: \: [/tex] Now, put the value of k in the ratio. [tex] \: \: [/tex] First number = 7k = 7(24) = 168 Second number = 4k = 4(24) = 96 ⠀⠀⠀⠀⠀⠀____________________ [tex]\sf\therefore{\underline{Hence, \: the \: two \: numbers \: are \: \bold{168} \: and \: \bold{96} \: respectively.}}[/tex] [tex] \: \: [/tex] [tex] \mathfrak {\underline{ \bigstar \: Verification \: :}}[/tex] [tex] \: \: [/tex] [tex] \sf : \implies \: 7k – 4k = 72 \\ \\ \\ \sf : \implies \: 3k = 72 \\ \\ \\ \sf : \implies3(24) = 72 \\ \\ \\ \sf : \implies72 = 72[/tex] [tex] \: \: [/tex] ⠀⠀⠀⠀⠀⠀____________________ [tex]\sf\therefore{\underline{Hence, \: verified \: \: }}[/tex] Reply
Answer :
Given :
To find :
Solution :
Given that, the difference is 72 so,
According to Question,
》7x – 4x = 72
》3x = 72
》x = 72/3
》x = 24
Then,
Hence, The numbers are 168 and 96
Verification :
》7x – 4x = 72
》7(24) – 4(24) = 72
》168 – 96 = 72
》72 = 72
Hence verified
[tex] \mathfrak {Given}\begin{cases} \sf \: Two \: numbers \: are \: in \: the \: ratio \: \bold{7 : 4}. \\ \\ \sf Difference \: of \: those \: numbers \: is \: \bold{72}.\end{cases}[/tex]
Need to find : Those numbers.
⠀⠀⠀⠀⠀⠀____________________
Let the numbers be 7k and 4k respectively.
[tex] \: \: [/tex]
It is given that their difference is 72.
[tex] \: \: [/tex]
[tex] \mathfrak{ \underline{ \bigstar \: substituting \: the \: values \: : }}[/tex]
[tex] \: [/tex]
[tex] \sf : \implies \: 7k – 4k = 72 \\ \\ \\ \sf : \implies3k = 72 \\ \\ \\ \sf : \implies \: k = \cancel\frac{72}{3} \\ \\ \\ \: \sf : \implies \underline{\boxed{\mathfrak\pink{k = 24}}} \: \bigstar[/tex]
[tex] \: \: [/tex]
Now, put the value of k in the ratio.
[tex] \: \: [/tex]
⠀⠀⠀⠀⠀⠀____________________
[tex]\sf\therefore{\underline{Hence, \: the \: two \: numbers \: are \: \bold{168} \: and \: \bold{96} \: respectively.}}[/tex]
[tex] \: \: [/tex]
[tex] \mathfrak {\underline{ \bigstar \: Verification \: :}}[/tex]
[tex] \: \: [/tex]
[tex] \sf : \implies \: 7k – 4k = 72 \\ \\ \\ \sf : \implies \: 3k = 72 \\ \\ \\ \sf : \implies3(24) = 72 \\ \\ \\ \sf : \implies72 = 72[/tex]
[tex] \: \: [/tex]
⠀⠀⠀⠀⠀⠀____________________
[tex]\sf\therefore{\underline{Hence, \: verified \: \: }}[/tex]