The sum of two numbers is 4000. If 15% of one is equal to 25% of the other number, find the numbers. About the author Josephine
Given: Sum of two numbers = 4000 15% of one number is equal to 25% of another number. To Find: What are numbers? Solution: As per given question, sum of numbers is equal to 4000. Let suppose that one number is x amd another is y. Therefore, x + y = 4000 •••••••eq.(i) Now, given that 15% of one number is equal to 25% of another number. Therefore, [tex]\small{\bf{\dfrac{15x}{100}~=~\dfrac{25y}{100}~~~~~•••••eq.(ii)}}[/tex] Solving equation (ii) :– [tex]\small{\bf{\dfrac{15x}{100}~=~\dfrac{25y}{100}}}[/tex] [Cancelling 100 because it is in both side] [tex]\implies\small{\bf{15x~=~25y}}[/tex] [tex]\implies\small{\bf{x~=~\dfrac{25y}{15}}}[/tex] We found that value of x = 25y/15 Putting value of ‘x’ in equation (i):– [tex]\small{\bf{x+y~=~4000}}[/tex] [tex]\implies\small{\bf{\dfrac{25y}{15}+y~=~4000}}[/tex] [tex]\implies\small{\bf{\dfrac{25y+15y}{15}~=~4000}}[/tex] [tex]\implies\small{\bf{\dfrac{40y}{15}~=~4000}}[/tex] [tex]\implies\small{\bf{40y~=~4000×15}}[/tex] [tex]\implies\small{\bf{y~=~\dfrac{4000×15}{40}}}[/tex] [tex]\implies\small{\bf{y~=~{\dfrac{\cancel{4000}×15}{\cancel{40}}}}}[/tex] [tex]\implies\small{\bf{y~=~100×15}}[/tex] [tex]\implies\small{\bf{\green{y~=~1500}}}[/tex] Now putting value of y in equation (ii) [tex]\small{\bf{x+y~=~4000}}[/tex] [tex]\implies\small{\bf{x+1500~=~4000}}[/tex] [tex]\implies\small{\bf{x~=~4000-1500}}[/tex] [tex]\implies\small{\green{\bf{x~=~2500}}}[/tex] Therefore, [tex]\large{\underline{\boxed{\bf{\red{Two~numbers~are~1500~and~2500~}}}}}[/tex] Reply
Given:
To Find:
Solution:
As per given question, sum of numbers is equal to 4000.
Let suppose that one number is x amd another is y.
Therefore,
Now, given that 15% of one number is equal to 25% of another number.
Therefore,
Solving equation (ii) :–
[tex]\small{\bf{\dfrac{15x}{100}~=~\dfrac{25y}{100}}}[/tex]
[Cancelling 100 because it is in both side]
[tex]\implies\small{\bf{15x~=~25y}}[/tex]
[tex]\implies\small{\bf{x~=~\dfrac{25y}{15}}}[/tex]
Putting value of ‘x’ in equation (i):–
[tex]\small{\bf{x+y~=~4000}}[/tex]
[tex]\implies\small{\bf{\dfrac{25y}{15}+y~=~4000}}[/tex]
[tex]\implies\small{\bf{\dfrac{25y+15y}{15}~=~4000}}[/tex]
[tex]\implies\small{\bf{\dfrac{40y}{15}~=~4000}}[/tex]
[tex]\implies\small{\bf{40y~=~4000×15}}[/tex]
[tex]\implies\small{\bf{y~=~\dfrac{4000×15}{40}}}[/tex]
[tex]\implies\small{\bf{y~=~{\dfrac{\cancel{4000}×15}{\cancel{40}}}}}[/tex]
[tex]\implies\small{\bf{y~=~100×15}}[/tex]
[tex]\implies\small{\bf{\green{y~=~1500}}}[/tex]
Now putting value of y in equation (ii)
[tex]\small{\bf{x+y~=~4000}}[/tex]
[tex]\implies\small{\bf{x+1500~=~4000}}[/tex]
[tex]\implies\small{\bf{x~=~4000-1500}}[/tex]
[tex]\implies\small{\green{\bf{x~=~2500}}}[/tex]
Therefore,