The sum of numerator and denominator of a fraction is greater by 1than thrice the numerator. If the numerator is decreased by 1 then thefraction reduces to Find the fraction. About the author Skylar
[tex]\huge{\textbf{\textsf{{\orange{A}}{\blue{n}}{\pink{s}}{\purple{w}}{\red{e}}{\green{r}}{\color{gold}{: }}{\color{navy}{-}}}}}[/tex] Given :- Sum of numerator and denominator of a fraction is greater by 1 than thrice the numerator. If the numerator is decreased by 1 then the fraction reduces to 1/3 To Find :- Fraction Solution :- Let the fraction be x/y [tex]\sf x + y = 3(x)+1[/tex] [tex]\sf x + y = 3x+1[/tex] [tex]\sf 0-1 = 3x-x-y[/tex] [tex]\sf -1 = 2x -y[/tex] [tex]\sf y = 2x+1[/tex] Now When decreased by 1 [tex]\sf\dfrac{x-1}{y} =\dfrac{1}{3}[/tex] By cross multiplication (y) = 3(x – 1) y = 3x – 3 y = 3x – 3 Substituting the value of y [tex]\sf 3x – 2x-1=3[/tex] [tex]\sf x-1=3[/tex] [tex]\sf x =3+1[/tex] [tex]\sf x =4[/tex] Finding the numerator [tex]\sf y = 3(4) – 3[/tex] [tex]\sf y = 12-3[/tex] [tex]\sf y =9[/tex] [tex]\bf Fraction = \dfrac{x}{y}[/tex] [tex]\sf Fraction = \dfrac{4}{9}[/tex] Reply
Given :- Sum of numerator and denominator of a fraction is greater by 1 than thrice the numerator. If the numerator is decreased by 1 then the fraction reduces to 1/3 To Find :- Fraction Solution :- Let the fraction be x/y [tex]\sf x + y = 3(x)+1[/tex] [tex]\sf x + y = 3x+1[/tex] [tex]\sf 0-1 = 3x-x-y[/tex] [tex]\sf -1 = 2x -y[/tex] [tex]\sf y = 2x+1[/tex] Now When decreased by 1 [tex]\sf\dfrac{x-1}{y} =\dfrac{1}{3}[/tex] By cross multiplication (y) = 3(x – 1) y = 3x – 3 y = 3x – 3 Substituting the value of y [tex]\sf 3x – 2x-1=3[/tex] [tex]\sf x-1=3[/tex] [tex]\sf x =3+1[/tex] [tex]\sf x =4[/tex] Finding the numerator [tex]\sf y = 3(4) – 3[/tex] [tex]\sf y = 12-3[/tex] [tex]\sf y =9[/tex] [tex]\bf Fraction = \dfrac{x}{y}[/tex] [tex]\sf Fraction = \dfrac{4}{9}[/tex] Reply
[tex]\huge{\textbf{\textsf{{\orange{A}}{\blue{n}}{\pink{s}}{\purple{w}}{\red{e}}{\green{r}}{\color{gold}{: }}{\color{navy}{-}}}}}[/tex]
Given :-
Sum of numerator and denominator of a fraction is greater by 1
than thrice the numerator. If the numerator is decreased by 1 then the
fraction reduces to 1/3
To Find :-
Fraction
Solution :-
Let the fraction be x/y
[tex]\sf x + y = 3(x)+1[/tex]
[tex]\sf x + y = 3x+1[/tex]
[tex]\sf 0-1 = 3x-x-y[/tex]
[tex]\sf -1 = 2x -y[/tex]
[tex]\sf y = 2x+1[/tex]
Now
When decreased by 1
[tex]\sf\dfrac{x-1}{y} =\dfrac{1}{3}[/tex]
By cross multiplication
(y) = 3(x – 1)
y = 3x – 3
y = 3x – 3
Substituting the value of y
[tex]\sf 3x – 2x-1=3[/tex]
[tex]\sf x-1=3[/tex]
[tex]\sf x =3+1[/tex]
[tex]\sf x =4[/tex]
Finding the numerator
[tex]\sf y = 3(4) – 3[/tex]
[tex]\sf y = 12-3[/tex]
[tex]\sf y =9[/tex]
[tex]\bf Fraction = \dfrac{x}{y}[/tex]
[tex]\sf Fraction = \dfrac{4}{9}[/tex]
Given :-
Sum of numerator and denominator of a fraction is greater by 1
than thrice the numerator. If the numerator is decreased by 1 then the
fraction reduces to 1/3
To Find :-
Fraction
Solution :-
Let the fraction be x/y
[tex]\sf x + y = 3(x)+1[/tex]
[tex]\sf x + y = 3x+1[/tex]
[tex]\sf 0-1 = 3x-x-y[/tex]
[tex]\sf -1 = 2x -y[/tex]
[tex]\sf y = 2x+1[/tex]
Now
When decreased by 1
[tex]\sf\dfrac{x-1}{y} =\dfrac{1}{3}[/tex]
By cross multiplication
(y) = 3(x – 1)
y = 3x – 3
y = 3x – 3
Substituting the value of y
[tex]\sf 3x – 2x-1=3[/tex]
[tex]\sf x-1=3[/tex]
[tex]\sf x =3+1[/tex]
[tex]\sf x =4[/tex]
Finding the numerator
[tex]\sf y = 3(4) – 3[/tex]
[tex]\sf y = 12-3[/tex]
[tex]\sf y =9[/tex]
[tex]\bf Fraction = \dfrac{x}{y}[/tex]
[tex]\sf Fraction = \dfrac{4}{9}[/tex]