The sum of first 6 terms of an arithmetic progression is 42 the 10th term and 30th term are in the ratio 1 : 2 .Find the 13th term of an arithmetic progression About the author Arianna
Step-by-step explanation: Given, The sum of first 6 terms of an A.P = 42 Ration of 10term of an A.P and 30th term of an A.P = 1 : 2 To Find :– 13th term of an A.P Formulas Required :– 1) [tex]\sf a_n = a + (n – 1) d[/tex] 2) [tex]\sf S_n = \dfrac{n}{2}[2a + (n – 1)d][/tex] Solution :– According to Question :- 1) 42 = [tex]\sf\dfrac{6}{2}[2a + (6-1)d][/tex] 42 = 3[2a + 5d] 42 = 6a + 15d [Let it be Equation – 1] 2) [tex]\sf\dfrac{a + (10-1)d}{a + (30 – 1)d} = \dfrac{1}{2}[/tex] [tex]\sf\dfrac{a + 9d}{a + 29d} = \dfrac{1}{2}[/tex] 2[a + 9d] = 1[a + 29d] 2a + 18d = a + 29d a = 11d Substituting value of ‘a’ in equation ‘1’ :- 42 = 6(11d) + 15d 42 = 66d + 15d 42 = 81d d = 42/81 = 1/2 a = 11d = 11(1/2) = 11/2 13 th term of an A.P :- = [tex]\sf\left[\dfrac{11}{2}+(13-1)\dfrac{1}{2}\right][/tex] = [tex]\sf\left[\dfrac{11}{2}+6\right][/tex] = [tex]\sf\dfrac{23}{2}[/tex] [tex]\sf a_{13} = \dfrac{23}{2}[/tex] Reply
Step-by-step explanation:
Given,
The sum of first 6 terms of an A.P = 42
Ration of 10term of an A.P and 30th term of an A.P = 1 : 2
To Find :–
13th term of an A.P
Formulas Required :–
1) [tex]\sf a_n = a + (n – 1) d[/tex]
2) [tex]\sf S_n = \dfrac{n}{2}[2a + (n – 1)d][/tex]
Solution :–
According to Question :-
1) 42 = [tex]\sf\dfrac{6}{2}[2a + (6-1)d][/tex]
42 = 3[2a + 5d]
42 = 6a + 15d
[Let it be Equation – 1]
2) [tex]\sf\dfrac{a + (10-1)d}{a + (30 – 1)d} = \dfrac{1}{2}[/tex]
[tex]\sf\dfrac{a + 9d}{a + 29d} = \dfrac{1}{2}[/tex]
2[a + 9d] = 1[a + 29d]
2a + 18d = a + 29d
a = 11d
Substituting value of ‘a’ in equation ‘1’ :-
42 = 6(11d) + 15d
42 = 66d + 15d
42 = 81d
d = 42/81 = 1/2
a = 11d = 11(1/2) = 11/2
13 th term of an A.P :-
= [tex]\sf\left[\dfrac{11}{2}+(13-1)\dfrac{1}{2}\right][/tex]
= [tex]\sf\left[\dfrac{11}{2}+6\right][/tex]
= [tex]\sf\dfrac{23}{2}[/tex]
[tex]\sf a_{13} = \dfrac{23}{2}[/tex]