The ratio of the sides of a triangle is 2:6:7. If the perimeter of the triangle is 195 meters, what is the length of the longest s

The ratio of the sides of a triangle is 2:6:7. If the perimeter of the triangle is 195 meters, what is the length of the longest side?

About the author
Sarah

2 thoughts on “The ratio of the sides of a triangle is 2:6:7. If the perimeter of the triangle is 195 meters, what is the length of the longest s”

  1. [tex]\large\underline\red{ \sf{ \pmb{Given}}}[/tex]

    • ➛ The ratio of the sides of a triangle is 2:6:7.
    • ➛ Perimeter of the triangle is 195 meters.

    [tex]\large\underline \red{ \sf{ \pmb{To \: Find }}}[/tex]

    • ➛ The Length of each side
    • ➛ Length of the longest side.

    [tex] \large \underline\red {\sf \pmb{Concept}}[/tex]

    ★ In this question the ratio of the sides of a triangle is 2:6:7 and the perimeter is 195 meter. Here we need to find the Length of each side and the length of the longest side of triangle. So,we will find the lenght of each side of triangle by using Perimeter of Triangle Formula. .

    [tex] \large\underline \red{ \sf{ \pmb{Using \: Formula }}}[/tex]

    [tex] \circ\underline{\boxed{ \sf{Perimeter \: of \: Triangle = a+b+c}}}[/tex]

    [tex]\large\underline\red{ \sf{ \pmb{Solution}}}[/tex]

    Let the side if rectangle be

    • ➛ a = 2x
    • ➛ b = 6x
    • ➛ c = 7x

    According to the question

    [tex]{\implies{ \sf{Perimeter \: of \: Triangle = a+b+c}}}[/tex]

    • Substituting the given values

    [tex]{\implies{ \sf{195 = 2x+6x+7x}}}[/tex]

    [tex]{\implies{ \sf{195 = 15x}}}[/tex]

    [tex]{\implies{ \sf{x = \dfrac{195}{15} }}}[/tex]

    [tex]{\implies{ \sf{x = \cancel\dfrac{195}{15} }}}[/tex]

    [tex]{\implies{ \sf{x = 13 \: cm }}}[/tex]

    [tex]\large\star\underline{\boxed{ \frak\purple{x = 13 \: cm }}}[/tex]

    Sides of Triangle,

    • ➟ a = (2×13)=26 cm
    • ➟ b = (6×13) = 78 cm
    • ➟ c = (7×13) = 91 cm

    [tex]\large\underline\red{ \sf{ \pmb{Verification}}}[/tex]

    [tex]{\implies{ \sf{Perimeter \: of \: Triangle = a+b+c}}}[/tex]

    • Substituting the values

    [tex]{\implies{ \sf{195 = 26+78+91}}}[/tex]

    [tex]{\implies{ \sf{195 \: cm = 195 \: cm}}}[/tex]

    [tex] \large \star\underline{\boxed{ \frak \purple{LHS = RHS }}} \\ \sf\underline{ Hence \: Verified} \checkmark[/tex]

    • Henceforth,The length of the longest side of triangle is 91 cm.

    [tex]\large\underline\red{ \sf{ \pmb{Know \: More }}}[/tex]

    Triangle

    ➢ A triangle is a three-sided polygon that closes in a space. It uses lines, line segments or rays (in any combination) to form the three sides. When three sides form and meet, they create three vertices, or corners.

    ➢ The corners inside the triangle are interior angles. The corners outside the triangle are exterior angles. The word “triangle” literally means three angles, “tri” being a Latin prefix for three, like tricycle (three wheels), trio (three members of a group), or triceps (three muscles in a group).

    Diagram of Triangle

    [tex]\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A$}\put(0.5,-0.3){$\bf C$}\put(5.2,-0.3){$\bf B$}\end{picture}[/tex]

    • Request – Please see the answer from website Brainly.in.

    Reply

Leave a Comment