The radius of a cylindrical tank is 14 m. And height 20 m. Is.Find the area of curvature of the cylindrical tank.(ii) Find the total surface area of a cylindrical tank.(iii) Find the volume of a cylindrical tank. About the author Ariana
[tex] \bf \underline{Given} : [/tex] ↴ [tex] \sf \implies Radius \: of \: cylindrical \: tank = 14 \: metre[/tex] [tex] \sf \implies Height \: of \: cylindrical \: tank = 20 \: metre[/tex] [tex] \bf \underline{To \: find} : [/tex] ↴ [tex] \sf \implies Area \: of \: curvature \: of \: cylindrical \: tank. [/tex] [tex] \sf \implies Total \: surface \: area \: of \: cylindrical \: tank. [/tex] [tex] \sf \implies Volume \: of \: cylindrical \: tank. [/tex] [tex] \bf\underline{ \underline{Solution} }[/tex] [tex] \sf (i). \: Area \: of \: curvature = Curved \: Surface \: area = 2 \pi r h [/tex] [tex] \sf \implies Curved \: Surface \: area = 2 \pi r h [/tex] [tex] \sf \implies 2 \times \dfrac{22}{7} \times 14 \times 20[/tex] [tex] \sf \implies 2 \times \dfrac{22}{7} \times 280[/tex] [tex] \sf \implies \dfrac{44}{7} \times 280[/tex] [tex] \sf \implies 44 \times 40[/tex] [tex] \sf \implies 1760 \: m^{2} [/tex] [tex] \boxed{\pink{ \sf Hence, area \: of \: curvature = 1760 \: m^{2}}}[/tex] _________________________________ [tex] \sf (ii).\: Total \: surface \: area \: of \: cylinder = 2 \pi r(h + r)[/tex] [tex] \sf \implies 2 \times \dfrac{22}{7} \times\: 14 \times (20 + 14)[/tex] [tex] \sf \implies 2 \times 22 \times\: 2 \times (20 + 14)[/tex] [tex] \sf \implies 2 \times 22 \times\: 2 \times34[/tex] [tex] \sf \implies 2992 \: m^{2} [/tex] [tex] \boxed{\pink{ \sf Hence, t otal \: surface \: area \: of \: cylinder = 2992 \: m^{2}}}[/tex] _________________________________ [tex] \sf (iii). \: Volume \: of \: cylindrical \: tank = \pi (r)^{2} h [/tex] [tex] \sf \implies \dfrac{22}{7} \times\: 14 ^{2} \times 20[/tex] [tex] \sf \implies \dfrac{22}{7} \times\: 14 \times 14 \times 20[/tex] [tex] \sf \implies \dfrac{22}{7} \times\: 3920[/tex] [tex] \sf \implies 22 \times 560[/tex] [tex] \sf \implies 12320 \: m^{3} [/tex] [tex] \boxed{\pink{ \sf Hence, volume \: of \: cylindrical \: tank = 12320 \: m^{3}}}[/tex] _________________________________ [tex] \bf \underline{Abbreviations} : [/tex] ↴ [tex] \sf \implies l=Length [/tex] [tex] \sf \implies h=Height [/tex] [tex] \sf \implies \pi=\dfrac{22}{7} [/tex] [tex] \sf \implies r=Radius [/tex] Reply
[tex] \bf \underline{Given} : [/tex] ↴
[tex] \sf \implies Radius \: of \: cylindrical \: tank = 14 \: metre[/tex]
[tex] \sf \implies Height \: of \: cylindrical \: tank = 20 \: metre[/tex]
[tex] \bf \underline{To \: find} : [/tex] ↴
[tex] \sf \implies Area \: of \: curvature \: of \: cylindrical \: tank. [/tex]
[tex] \sf \implies Total \: surface \: area \: of \: cylindrical \: tank. [/tex]
[tex] \sf \implies Volume \: of \: cylindrical \: tank. [/tex]
[tex] \bf\underline{ \underline{Solution} }[/tex]
[tex] \sf (i). \: Area \: of \: curvature = Curved \: Surface \: area = 2 \pi r h [/tex]
[tex] \sf \implies Curved \: Surface \: area = 2 \pi r h [/tex]
[tex] \sf \implies 2 \times \dfrac{22}{7} \times 14 \times 20[/tex]
[tex] \sf \implies 2 \times \dfrac{22}{7} \times 280[/tex]
[tex] \sf \implies \dfrac{44}{7} \times 280[/tex]
[tex] \sf \implies 44 \times 40[/tex]
[tex] \sf \implies 1760 \: m^{2} [/tex]
[tex] \boxed{\pink{ \sf Hence, area \: of \: curvature = 1760 \: m^{2}}}[/tex]
_________________________________
[tex] \sf (ii).\: Total \: surface \: area \: of \: cylinder = 2 \pi r(h + r)[/tex]
[tex] \sf \implies 2 \times \dfrac{22}{7} \times\: 14 \times (20 + 14)[/tex]
[tex] \sf \implies 2 \times 22 \times\: 2 \times (20 + 14)[/tex]
[tex] \sf \implies 2 \times 22 \times\: 2 \times34[/tex]
[tex] \sf \implies 2992 \: m^{2} [/tex]
[tex] \boxed{\pink{ \sf Hence, t otal \: surface \: area \: of \: cylinder = 2992 \: m^{2}}}[/tex]
_________________________________
[tex] \sf (iii). \: Volume \: of \: cylindrical \: tank = \pi (r)^{2} h [/tex]
[tex] \sf \implies \dfrac{22}{7} \times\: 14 ^{2} \times 20[/tex]
[tex] \sf \implies \dfrac{22}{7} \times\: 14 \times 14 \times 20[/tex]
[tex] \sf \implies \dfrac{22}{7} \times\: 3920[/tex]
[tex] \sf \implies 22 \times 560[/tex]
[tex] \sf \implies 12320 \: m^{3} [/tex]
[tex] \boxed{\pink{ \sf Hence, volume \: of \: cylindrical \: tank = 12320 \: m^{3}}}[/tex]
_________________________________
[tex] \bf \underline{Abbreviations} : [/tex] ↴
[tex] \sf \implies l=Length [/tex]
[tex] \sf \implies h=Height [/tex]
[tex] \sf \implies \pi=\dfrac{22}{7} [/tex]
[tex] \sf \implies r=Radius [/tex]