The radii of two concentric circles are 13 and 8.A chord of the outer circle touches the inner circle. Find the length of that chord About the author Arianna
Step-by-step explanation: Fromthefigure ODistheradiusofsamllercircle andBDisthetangenttothesmallercircle so,OD⊥BD ∴∠ODB=90 ∘ and, InthebiggercirclePisapointinthesemi−circleofthebiggercircle ∴∠APB=90 ∘ InΔABPandΔOBD ∠APB=∠ODB=90 ∘ ∠ABP=∠ODB(common) ΔABP∼ΔOBD(AAsimilarity) Now, OD AP = OB AB 8 AP = 13 26 AP=2×8 =16 cm Reply
Answer:
the answer that your looking for is root 322
Step-by-step explanation:
Fromthefigure
ODistheradiusofsamllercircle
andBDisthetangenttothesmallercircle
so,OD⊥BD
∴∠ODB=90
∘
and,
InthebiggercirclePisapointinthesemi−circleofthebiggercircle
∴∠APB=90
∘
InΔABPandΔOBD
∠APB=∠ODB=90
∘
∠ABP=∠ODB(common)
ΔABP∼ΔOBD(AAsimilarity)
Now,
OD
AP
=
OB
AB
8
AP
=
13
26
AP=2×8
=16 cm