The product of two rational numbers is -1 if one number is -17/8 find other. About the author Kaylee
Answer :– The other rational number is 8/17. To find :– The other rational number. Solution :– It is given that the product of two rational numbers is -1 and one of the numbers is -17/8. We have to find the other number. Let the other rational number be “x”. It has been given that :– Their product is -1. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Therefore :– [tex] \longmapsto\sf \left(\dfrac{ – 17}{ \: \: \: \: \: 8} \right) \times x = – 1[/tex] [tex] \longmapsto\sf x = – 1 \div \left(\dfrac{ – 17}{ \: \: \: \: \: 8} \right)[/tex] [tex] \longmapsto\sf x = – 1 \times \left(\dfrac{ \: \: \: \: \: 8}{ – 17} \right) [/tex] [tex] \longmapsto\sf x = \left(\dfrac{ – 8}{ – 17} \right)[/tex] [tex] \longmapsto\sf x = \left(\dfrac{ \: \: \not\!\!- 8}{ \not\!\!- 17} \right)[/tex] [tex] \longmapsto\sf x = \left(\dfrac{8}{17} \right)[/tex] Hence, the other rational number is 8/17. ———————————————————– Know more :- What is a rational number? A number that can be expressed in the form of p/q, where p, q are integers and q ≠ 0, is called a rational number. Reply
[tex]\begin{gathered}{\Large{\textsf{\textbf{\underline{Given} :}}}} \end{gathered}[/tex] Product of two rational numbers is -1 One number is [tex] \sf \dfrac{-17}{8}[/tex] [tex] \\ [/tex] [tex]\begin{gathered}{\Large{\textsf{\textbf{\underline{To \: Find} :}}}} \end{gathered}[/tex] Other number = ? [tex] \\ [/tex] [tex]\begin{gathered}{\Large{\textsf{\textbf{\underline{Solution} :}}}} \end{gathered}[/tex] Let other number be “x”. [tex] \\ [/tex] As, we are given that the product of two rational numbers is -1 and one number is [tex] \sf \dfrac{-17}{8}[/tex]. [tex] \\ [/tex] So to find another number, we have equation : [tex] \\ [/tex] [tex] \sf : \implies x \times \dfrac{-17}{8} = -1[/tex] [tex] \sf : \implies x \times -17 = -1\times 8[/tex] [tex] \sf : \implies x \times -17 = -8[/tex] [tex] \sf : \implies x = \dfrac{-8}{-17}[/tex] [tex] \sf : \implies x = \dfrac{8}{17}[/tex] [tex] \\ [/tex] [tex] \underline{\boxed{\bf x = \dfrac{8}{17}}}[/tex] [tex] \\ [/tex] [tex] \pink{\underline{\sf Hence, \: another\: rational\: number\: is\: \dfrac{8}{17}}.}[/tex] Reply
Answer :–
To find :–
Solution :–
Let the other rational number be “x”.
It has been given that :–
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
Therefore :–
[tex] \longmapsto\sf \left(\dfrac{ – 17}{ \: \: \: \: \: 8} \right) \times x = – 1[/tex]
[tex] \longmapsto\sf x = – 1 \div \left(\dfrac{ – 17}{ \: \: \: \: \: 8} \right)[/tex]
[tex] \longmapsto\sf x = – 1 \times \left(\dfrac{ \: \: \: \: \: 8}{ – 17} \right) [/tex]
[tex] \longmapsto\sf x = \left(\dfrac{ – 8}{ – 17} \right)[/tex]
[tex] \longmapsto\sf x = \left(\dfrac{ \: \: \not\!\!- 8}{ \not\!\!- 17} \right)[/tex]
[tex] \longmapsto\sf x = \left(\dfrac{8}{17} \right)[/tex]
———————————————————–
Know more :-
What is a rational number?
[tex]\begin{gathered}{\Large{\textsf{\textbf{\underline{Given} :}}}} \end{gathered}[/tex]
[tex] \\ [/tex]
[tex]\begin{gathered}{\Large{\textsf{\textbf{\underline{To \: Find} :}}}} \end{gathered}[/tex]
[tex] \\ [/tex]
[tex]\begin{gathered}{\Large{\textsf{\textbf{\underline{Solution} :}}}} \end{gathered}[/tex]
Let other number be “x”.
[tex] \\ [/tex]
As, we are given that the product of two rational numbers is -1 and one number is [tex] \sf \dfrac{-17}{8}[/tex].
[tex] \\ [/tex]
So to find another number, we have equation :
[tex] \\ [/tex]
[tex] \sf : \implies x \times \dfrac{-17}{8} = -1[/tex]
[tex] \sf : \implies x \times -17 = -1\times 8[/tex]
[tex] \sf : \implies x \times -17 = -8[/tex]
[tex] \sf : \implies x = \dfrac{-8}{-17}[/tex]
[tex] \sf : \implies x = \dfrac{8}{17}[/tex]
[tex] \\ [/tex]
[tex] \underline{\boxed{\bf x = \dfrac{8}{17}}}[/tex]
[tex] \\ [/tex]
[tex] \pink{\underline{\sf Hence, \: another\: rational\: number\: is\: \dfrac{8}{17}}.}[/tex]