The perimeter of two similar triangles ABC and PQR are respectively, 48 cm and 36 cm. If PQ = 12 cm, then find AB.​

The perimeter of two similar triangles ABC and PQR are respectively, 48 cm and 36 cm. If PQ = 12 cm, then find AB.​

About the author
Clara

2 thoughts on “The perimeter of two similar triangles ABC and PQR are respectively, 48 cm and 36 cm. If PQ = 12 cm, then find AB.​”

  1. Answer:

    AB = 16cm

    Step-by-step explanation:

    Since the ratio of the corresponding sides of similar triangles is same as the ratio of their perimeters.

    ∴ ∆ABC ~ ∆PQR

    =>$\fbox{${\frac{AB}{PQ}\mathrm{{=}}\frac{BC}{QR}\mathrm{{=}}\frac{AC}{OR}\mathrm{{=}}\frac{\mathrm{48}}{\mathrm{36}}}$}$

    => $\fbox{${\frac{AB}{PQ}\mathrm{{=}}\frac{\mathrm{48}}{\mathrm{36}}}$}$

    =>$\fbox{${\frac{AB}{\mathrm{12}}\mathrm{{=}}\frac{\mathrm{48}}{\mathrm{36}}}$}$

    [tex]ab = \frac{48 \times 12}{36} cm \\ = > 16cm.[/tex]

    [tex] {}^{i \: hope \: its \: help \: you} [/tex]

    Reply

Leave a Comment