The median and mode respectively of a frecuencdistribution are 26 and 29. Then find its mean About the author Ximena
[tex]\begin{gathered}\begin{gathered}\bf \:Given – \begin{cases} &\sf{Median = 26} \\ &\sf{Mode = 29} \end{cases}\end{gathered}\end{gathered}[/tex] [tex]\begin{gathered}\begin{gathered}\bf \:To\:find-\begin{cases} &\sf{Mean} \end{cases}\end{gathered}\end{gathered}[/tex] [tex]\large\underline{\sf{Solution-}}[/tex] Given that Median = 26 Mode = 29 We know that Relationship between Mean, Mode and Median is given by Empirical Formula, Empirical Formula is given by [tex]\rm :\longmapsto\:Mode = 3Median – 2Mean[/tex] On substituting the values of Median and Mode, we get [tex]\rm :\longmapsto\:29 = 3 \times 26 – 2Mean[/tex] [tex]\rm :\longmapsto\:29 = 78 – 2Mean[/tex] [tex]\rm :\longmapsto\:2Mean = 78 – 29[/tex] [tex]\rm :\longmapsto\:2Mean = 49[/tex] [tex]\bf\implies \:Mean = 24.5[/tex] Additional Information :- The mean (average) of a data set is found by adding all numbers in the data set and then dividing by the number of values in the set. The median is the middle value when a data set is ordered from least to greatest. The mode is the number that occurs most often in a data set. Reply
[tex]\begin{gathered}\begin{gathered}\bf \:Given – \begin{cases} &\sf{Median = 26} \\ &\sf{Mode = 29} \end{cases}\end{gathered}\end{gathered}[/tex]
[tex]\begin{gathered}\begin{gathered}\bf \:To\:find-\begin{cases} &\sf{Mean} \end{cases}\end{gathered}\end{gathered}[/tex]
[tex]\large\underline{\sf{Solution-}}[/tex]
Given that
We know that
[tex]\rm :\longmapsto\:Mode = 3Median – 2Mean[/tex]
On substituting the values of Median and Mode, we get
[tex]\rm :\longmapsto\:29 = 3 \times 26 – 2Mean[/tex]
[tex]\rm :\longmapsto\:29 = 78 – 2Mean[/tex]
[tex]\rm :\longmapsto\:2Mean = 78 – 29[/tex]
[tex]\rm :\longmapsto\:2Mean = 49[/tex]
[tex]\bf\implies \:Mean = 24.5[/tex]
Additional Information :-