The length breath and height of cuboid are 7.2m, 5m, 3.6m. Find volume of cuboid About the author Genesis
Given : The length, breath & height of cuboid are 7.2m, 5m & 3.6m. Need To Find : The Volume of Cuboid. ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ ❒ Volume of Cuboid : [tex]\star\boxed {\purple {\sf{ Volume _{(Cuboid)} = l \times b \times h \;\;cu.units \:}}}\\\\[/tex] Where, l is the Length of Cuboid , b is the Breadth of Cuboid & h is the Height of Cuboid. ⠀⠀⠀⠀⠀⠀[tex]\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex] [tex]:\implies \sf{ Volume _{(Cuboid)} = 7.2 \times \:5 \times 3.6 \:}\\\\\\:\implies \sf{Volume _{(Cuboid)} = 36 \times 3.6}\\\\\\\underline {\boxed{\pink{ \mathrm { Volume _{(Cuboid)} = 129.6\: m^3}}}}\:\bf{\bigstar}\\[/tex] Therefore, ⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm { Volume \:of\:Cuboid \:is\:\bf{129.6\: m^3}}}}\\[/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ [tex]\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\[/tex] [tex]\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}[/tex] ⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀ Reply
Given : The length, breath & height of cuboid are 7.2m, 5m & 3.6m.
Need To Find : The Volume of Cuboid.
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
❒ Volume of Cuboid :
[tex]\star\boxed {\purple {\sf{ Volume _{(Cuboid)} = l \times b \times h \;\;cu.units \:}}}\\\\[/tex]
Where,
⠀⠀⠀⠀⠀⠀[tex]\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\[/tex]
[tex]:\implies \sf{ Volume _{(Cuboid)} = 7.2 \times \:5 \times 3.6 \:}\\\\\\:\implies \sf{Volume _{(Cuboid)} = 36 \times 3.6}\\\\\\\underline {\boxed{\pink{ \mathrm { Volume _{(Cuboid)} = 129.6\: m^3}}}}\:\bf{\bigstar}\\[/tex]
Therefore,
⠀⠀⠀⠀⠀[tex]\therefore {\underline{ \mathrm { Volume \:of\:Cuboid \:is\:\bf{129.6\: m^3}}}}\\[/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
[tex]\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\[/tex]
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀
Answer:
Volume of cuboid=l*b*h=7.2*5*3.6=129.6 cubic m