The HCF and LCM of two numbers is 5 and 30 respectively. If one of the numbers is 10, find the other number. About the author Eva
[tex] \underline \mathfrak \red{Question-:}[/tex] The HCF and LCM of two numbers is 5 and 30 respectively. If one of the numbers is 10, find the other number. [tex] \underline \mathfrak \red{Answer-:}[/tex] FORMULA REQUIRED –: Product of 2 numbers = LCM × HCF [tex] \underline \mathfrak \pink{Given-:}[/tex] LCM = 5 HCF = 30 FIRST NUMBER = 10 OTHER NUMBER = ? Therefore , other number = [tex] \red{→5 \times \frac{30}{10}}[/tex] [tex] \red{→ \frac{150}{10}}[/tex] [tex] \red{ = 15}[/tex] Hence , The other number is 15 ! ( ☘Apologies for any mistakes made in the above answer) ( ☘Not a copied answer ᕕ( ᐛ )ᕗ) Reply
[tex] \underline \mathfrak \red{Question-:}[/tex]
[tex] \underline \mathfrak \red{Answer-:}[/tex]
FORMULA REQUIRED –:
Product of 2 numbers = LCM × HCF
[tex] \underline \mathfrak \pink{Given-:}[/tex]
LCM = 5
HCF = 30
FIRST NUMBER = 10
OTHER NUMBER = ?
Therefore , other number =
[tex] \red{→5 \times \frac{30}{10}}[/tex]
[tex] \red{→ \frac{150}{10}}[/tex]
[tex] \red{ = 15}[/tex]
Hence , The other number is 15 !
( ☘Apologies for any mistakes made in the above answer)
( ☘Not a copied answer ᕕ( ᐛ )ᕗ)