The diameter of a cylinder is 28 cm and its height is 20 cm. Find its total surface area. About the author Mackenzie
Given: A cylinder with – Diameter = 28 cm Height = 20 cm What To Find: We have to find – The total surface area. Formula Needed: [tex]\bf \mapsto TSA = 2 \pi r^2 + 2 \pi rh[/tex] Where – TSA = Total surface area. R = radius H = Height Solution: Finding the radius. We know that – [tex]\sf \mapsto R = \dfrac{Diameter}{2}[/tex] Substitute the value, [tex]\sf \mapsto R = \dfrac{28}{2}[/tex] Divide 28 by 2, [tex]\sf \mapsto R = 14 \: cm[/tex] Finding the TSA. Using the formula, [tex]\sf \mapsto TSA = 2 \pi r^2 + 2 \pi rh[/tex] Substitute the values, [tex]\sf \mapsto TSA = 2 \times \dfrac{22}{7} \times 14 \times 14 + 2 \times \dfrac{22}{7} \times 14 \times 20[/tex] Multiply 14 with 14, [tex]\sf \mapsto TSA = 2 \times \dfrac{22}{7} \times 196 + 2 \times \dfrac{22}{7} \times 14 \times 20[/tex] Multiply 14 with 20, [tex]\sf \mapsto TSA = 2 \times \dfrac{22}{7} \times 196 + 2 \times \dfrac{22}{7} \times 280[/tex] Cancel 7 and 196, [tex]\sf \mapsto TSA = 2 \times 22 \times 28 + 2 \times \dfrac{22}{7} \times 280[/tex] Cancel 7 and 280, [tex]\sf \mapsto TSA = 2 \times 22 \times 28 + 2 \times 22 \times 40[/tex] Multiply 2, 22, and 28, [tex]\sf \mapsto TSA = 1232 + 2 \times 22 \times 40[/tex] Multiply 2, 22, and 40, [tex]\sf \mapsto TSA = 1232 + 1760[/tex] Add 1232 and 1760, [tex]\sf \mapsto TSA = 2992 \: cm^2[/tex] Final Answer: ∴ Thus, the total surface area of the cylinder is 2992 cm². Reply
Answer: 2992 cm = 29.92 m Step-by-step explanation: Radius = Diameter / 2 = 28/2 = 14cm [tex]tsa \: of \: a \: cylinder = 2\pi \times r(r + h)[/tex] =>tsa = (2 x 22 x 14)(14 + 20)/7 = 2992 cm Reply
Given:
A cylinder with –
What To Find:
We have to find –
Formula Needed:
[tex]\bf \mapsto TSA = 2 \pi r^2 + 2 \pi rh[/tex]
Where –
Solution:
We know that –
[tex]\sf \mapsto R = \dfrac{Diameter}{2}[/tex]
Substitute the value,
[tex]\sf \mapsto R = \dfrac{28}{2}[/tex]
Divide 28 by 2,
[tex]\sf \mapsto R = 14 \: cm[/tex]
Using the formula,
[tex]\sf \mapsto TSA = 2 \pi r^2 + 2 \pi rh[/tex]
Substitute the values,
[tex]\sf \mapsto TSA = 2 \times \dfrac{22}{7} \times 14 \times 14 + 2 \times \dfrac{22}{7} \times 14 \times 20[/tex]
Multiply 14 with 14,
[tex]\sf \mapsto TSA = 2 \times \dfrac{22}{7} \times 196 + 2 \times \dfrac{22}{7} \times 14 \times 20[/tex]
Multiply 14 with 20,
[tex]\sf \mapsto TSA = 2 \times \dfrac{22}{7} \times 196 + 2 \times \dfrac{22}{7} \times 280[/tex]
Cancel 7 and 196,
[tex]\sf \mapsto TSA = 2 \times 22 \times 28 + 2 \times \dfrac{22}{7} \times 280[/tex]
Cancel 7 and 280,
[tex]\sf \mapsto TSA = 2 \times 22 \times 28 + 2 \times 22 \times 40[/tex]
Multiply 2, 22, and 28,
[tex]\sf \mapsto TSA = 1232 + 2 \times 22 \times 40[/tex]
Multiply 2, 22, and 40,
[tex]\sf \mapsto TSA = 1232 + 1760[/tex]
Add 1232 and 1760,
[tex]\sf \mapsto TSA = 2992 \: cm^2[/tex]
Final Answer:
∴ Thus, the total surface area of the cylinder is 2992 cm².
Answer:
2992 cm = 29.92 m
Step-by-step explanation:
Radius = Diameter / 2 = 28/2 = 14cm
[tex]tsa \: of \: a \: cylinder = 2\pi \times r(r + h)[/tex]
=>tsa = (2 x 22 x 14)(14 + 20)/7 = 2992 cm