The diagonals AC and BD of parallelogram ABCD intersect at the point o. If __DAC = 34 and ZAOB= 75 thenmeasure _DBC is3401750 About the author Arya
Answer: ∠DBC = 41° Step-by-step explanation: ABCD is a parallelogram . ∴ AD | | BC ⇒ ∠ACB = ∠DAC = 34° Now, ∠AOB is an exterior angle of △BOC ∴ ∠OBC + OCB = ∠AOB [ ext ∠ = sum of two int. opp. ∠S] ⇒ ∠OBC + 34° = 75° ⇒ ∠OBC = 75° – 34° = 41° or ∠DBC = 41° Reply
Answer:
∠DBC = 41°
Step-by-step explanation:
ABCD is a parallelogram .
∴ AD | | BC ⇒ ∠ACB = ∠DAC = 34°
Now, ∠AOB is an exterior angle of △BOC
∴ ∠OBC + OCB = ∠AOB [ ext ∠ = sum of two int. opp. ∠S]
⇒ ∠OBC + 34° = 75°
⇒ ∠OBC = 75° – 34° = 41°
or ∠DBC = 41°