The curvature of the curve y = f (x) is zero at every point on the curve. Which one of the following

could be f (x)?​

The curvature of the curve y = f (x) is zero at every point on the curve. Which one of the following

could be f (x)?​

About the author
Adalynn

2 thoughts on “The curvature of the curve y = f (x) is zero at every point on the curve. Which one of the following<br /><br />could be f (x)?​”

  1. Answer:

    mrnrmtkrmen

    Step-by-step explanation:

    नजर में ट् रो रहा था और एक अँ धे श क् ष क र ति क र ka kya ho gya tha ki baat kr rha tha

    Reply
  2. Step-by-step explanation:

    Step-by-step explanation:

    \begin{gathered}\implies \sf{\dfrac{10x+3y}{5x+2y} = \dfrac{9}{5} }\\\\\\\implies \sf{\dfrac{10x\frac{y}{y} +3y}{5x\frac{y}{y}+2y}=\dfrac{9}{5} }\\\\\\\implies \sf{\dfrac{y\big(10\frac{x}{y}+3\big)}{y\big(5\frac{x}{y}+2\big)}=\dfrac{9}{5} }\end{gathered}

    5x+2y

    10x+3y

    =

    5

    9

    5x

    y

    y

    +2y

    10x

    y

    y

    +3y

    =

    5

    9

    y(5

    y

    x

    +2)

    y(10

    y

    x

    +3)

    =

    5

    9

    Let \dfrac{x}{y}=k

    y

    x

    =k ,

    \begin{gathered}\implies\sf{\dfrac{10k+3}{5k+2}=\dfrac{9}{5}} \\\\\implies\sf{5(10k+3)=9(5k+2) }\\\\\implies\sf{k=\dfrac{3}{5}}\end{gathered}

    5k+2

    10k+3

    =

    5

    9

    ⟹5(10k+3)=9(5k+2)

    ⟹k=

    5

    3

    Hence,

    \begin{gathered}\implies \sf{\dfrac{2x+y}{x+2y} }\\\\\\\implies \sf{\dfrac{2x\frac{y}{y} +y}{x\frac{y}{y}+2y} }\\\\\\\implies \sf{\dfrac{y\big(2\frac{x}{y}+1\big)}{y\big(\frac{x}{y}+2\big)} }\end{gathered}

    x+2y

    2x+y

    x

    y

    y

    +2y

    2x

    y

    y

    +y

    y(

    y

    x

    +2)

    y(2

    y

    x

    +1)

    \begin{gathered}\implies\sf{\dfrac{2k+1}{k+2} =\dfrac{2\big(\frac{3}{5}\big)+1}{\frac{3}{5}+2} }\\\\\implies\sf{ \dfrac{11}{13} }\end{gathered}

    k+2

    2k+1

    =

    5

    3

    +2

    2(

    5

    3

    )+1

    13

    11

    Question 2:

    Let the x should be added,

    ⇒ (2 + x)/(5 + x) = 6/11

    ⇒ 11(2 + x) = 6(5 + x)

    ⇒ 22 + 11x = 30 + 6x

    ⇒ 11x – 6x = 30 – 22

    ⇒ 5x = 8

    ⇒ x = 8/5

    8/5 should be subtracted

    Reply

Leave a Comment