The curvature of the curve y = f (x) is zero at every point on the curve. Which one of the following could be f (x)? About the author Adalynn
Answer: mrnrmtkrmen Step-by-step explanation: नजर में ट् रो रहा था और एक अँ धे श क् ष क र ति क र ka kya ho gya tha ki baat kr rha tha Reply
Step-by-step explanation: Step-by-step explanation: \begin{gathered}\implies \sf{\dfrac{10x+3y}{5x+2y} = \dfrac{9}{5} }\\\\\\\implies \sf{\dfrac{10x\frac{y}{y} +3y}{5x\frac{y}{y}+2y}=\dfrac{9}{5} }\\\\\\\implies \sf{\dfrac{y\big(10\frac{x}{y}+3\big)}{y\big(5\frac{x}{y}+2\big)}=\dfrac{9}{5} }\end{gathered} ⟹ 5x+2y 10x+3y = 5 9 ⟹ 5x y y +2y 10x y y +3y = 5 9 ⟹ y(5 y x +2) y(10 y x +3) = 5 9 Let \dfrac{x}{y}=k y x =k , \begin{gathered}\implies\sf{\dfrac{10k+3}{5k+2}=\dfrac{9}{5}} \\\\\implies\sf{5(10k+3)=9(5k+2) }\\\\\implies\sf{k=\dfrac{3}{5}}\end{gathered} ⟹ 5k+2 10k+3 = 5 9 ⟹5(10k+3)=9(5k+2) ⟹k= 5 3 Hence, \begin{gathered}\implies \sf{\dfrac{2x+y}{x+2y} }\\\\\\\implies \sf{\dfrac{2x\frac{y}{y} +y}{x\frac{y}{y}+2y} }\\\\\\\implies \sf{\dfrac{y\big(2\frac{x}{y}+1\big)}{y\big(\frac{x}{y}+2\big)} }\end{gathered} ⟹ x+2y 2x+y ⟹ x y y +2y 2x y y +y ⟹ y( y x +2) y(2 y x +1) \begin{gathered}\implies\sf{\dfrac{2k+1}{k+2} =\dfrac{2\big(\frac{3}{5}\big)+1}{\frac{3}{5}+2} }\\\\\implies\sf{ \dfrac{11}{13} }\end{gathered} ⟹ k+2 2k+1 = 5 3 +2 2( 5 3 )+1 ⟹ 13 11 Question 2: Let the x should be added, ⇒ (2 + x)/(5 + x) = 6/11 ⇒ 11(2 + x) = 6(5 + x) ⇒ 22 + 11x = 30 + 6x ⇒ 11x – 6x = 30 – 22 ⇒ 5x = 8 ⇒ x = 8/5 8/5 should be subtracted Reply
Answer:
mrnrmtkrmen
Step-by-step explanation:
नजर में ट् रो रहा था और एक अँ धे श क् ष क र ति क र ka kya ho gya tha ki baat kr rha tha
Step-by-step explanation:
Step-by-step explanation:
\begin{gathered}\implies \sf{\dfrac{10x+3y}{5x+2y} = \dfrac{9}{5} }\\\\\\\implies \sf{\dfrac{10x\frac{y}{y} +3y}{5x\frac{y}{y}+2y}=\dfrac{9}{5} }\\\\\\\implies \sf{\dfrac{y\big(10\frac{x}{y}+3\big)}{y\big(5\frac{x}{y}+2\big)}=\dfrac{9}{5} }\end{gathered}
⟹
5x+2y
10x+3y
=
5
9
⟹
5x
y
y
+2y
10x
y
y
+3y
=
5
9
⟹
y(5
y
x
+2)
y(10
y
x
+3)
=
5
9
Let \dfrac{x}{y}=k
y
x
=k ,
\begin{gathered}\implies\sf{\dfrac{10k+3}{5k+2}=\dfrac{9}{5}} \\\\\implies\sf{5(10k+3)=9(5k+2) }\\\\\implies\sf{k=\dfrac{3}{5}}\end{gathered}
⟹
5k+2
10k+3
=
5
9
⟹5(10k+3)=9(5k+2)
⟹k=
5
3
Hence,
\begin{gathered}\implies \sf{\dfrac{2x+y}{x+2y} }\\\\\\\implies \sf{\dfrac{2x\frac{y}{y} +y}{x\frac{y}{y}+2y} }\\\\\\\implies \sf{\dfrac{y\big(2\frac{x}{y}+1\big)}{y\big(\frac{x}{y}+2\big)} }\end{gathered}
⟹
x+2y
2x+y
⟹
x
y
y
+2y
2x
y
y
+y
⟹
y(
y
x
+2)
y(2
y
x
+1)
\begin{gathered}\implies\sf{\dfrac{2k+1}{k+2} =\dfrac{2\big(\frac{3}{5}\big)+1}{\frac{3}{5}+2} }\\\\\implies\sf{ \dfrac{11}{13} }\end{gathered}
⟹
k+2
2k+1
=
5
3
+2
2(
5
3
)+1
⟹
13
11
Question 2:
Let the x should be added,
⇒ (2 + x)/(5 + x) = 6/11
⇒ 11(2 + x) = 6(5 + x)
⇒ 22 + 11x = 30 + 6x
⇒ 11x – 6x = 30 – 22
⇒ 5x = 8
⇒ x = 8/5
8/5 should be subtracted