The area of parallelogram is 65 cm² one of its side is 5 centimetre what is the height from its opposite vertex? About the author Mia
[tex]\sf\small{ \underline{\underline{ \pmb{Given:-}}}}[/tex] Area Of Parallelogram = 65 cm² Length Of Side Parallelogram = 5 cm [tex]\sf\small{ \underline{\underline{ \pmb{ To \: Find:-}}}}[/tex] Heights Of Opposite Vertex [tex]\sf\small{ \underline{\underline{ \pmb{ Solution:-}}}}[/tex] Distance of given side from opposite side is heights Now Applying Parallelogram Formula [tex] \underline{ \boxed{ \red{ \sf \: Area \: Of \: Parallelogram = Base \times Heights}}} \purple\bigstar[/tex] [tex] \sf \longrightarrow 65 \: cm^2 = 5 \times Heights[/tex] [tex] \sf \longrightarrow Heights = \cancel\frac {65}{5} \\ [/tex] [tex] \sf \longrightarrow Heights = 13 \: cm[/tex] Heights Of Opposite Vertex is 13 cm. Reply
Step-by-step explanation: Given : Area Of Parallelogram = 65 cm^2 Length Of Side Parallelogram = 5 CM Find : Heights Of Opposite Vertex Solutions : Distance of given side from opposite side is heights Now Applying Parallelogram Formula Area Of Parallelogram = Base × Heights 65 cm^2 = 5 × Heights Heights = 65/5 Heights = 13 cm Heights Of Opposite Vertex is 13 cm Reply
[tex]\sf\small{ \underline{\underline{ \pmb{Given:-}}}}[/tex]
[tex]\sf\small{ \underline{\underline{ \pmb{ To \: Find:-}}}}[/tex]
[tex]\sf\small{ \underline{\underline{ \pmb{ Solution:-}}}}[/tex]
Distance of given side from opposite side is heights
[tex] \underline{ \boxed{ \red{ \sf \: Area \: Of \: Parallelogram = Base \times Heights}}} \purple\bigstar[/tex]
[tex] \sf \longrightarrow 65 \: cm^2 = 5 \times Heights[/tex]
[tex] \sf \longrightarrow Heights = \cancel\frac {65}{5} \\ [/tex]
[tex] \sf \longrightarrow Heights = 13 \: cm[/tex]
Heights Of Opposite Vertex is 13 cm.
Step-by-step explanation:
Given : Area Of Parallelogram = 65 cm^2
Length Of Side Parallelogram = 5 CM
Find : Heights Of Opposite Vertex
Solutions : Distance of given side from opposite side is heights
Now Applying Parallelogram Formula
Area Of Parallelogram = Base × Heights
65 cm^2 = 5 × Heights
Heights = 65/5
Heights = 13 cm
Heights Of Opposite Vertex is 13 cm