The area of a triangle is 84 cm2. If the length of the sides are consecutive natural numbers, then what are the dimensions (in cm) of the triangle? About the author Luna
Answer: Correct option is B 4,5,6 Using sine law, n−1 sinα = n+1 sin2α ⇒2cosα= (n−1) n+1 ⇒cosα= 2(n−1) n+1 ∴ 2n(n+1) n 2 +(n+1) 2 −(n−1) 2 = 2(n−1) (n+1) (using cosine law) ⇒ 2n+(n+1) n 2 +4n = 2(n−1) (n+1) ⇒ 2(n+1) n+4 = 2(n−1) n+1 ⇒(n+1) 2 =(n+4)(n−1) ∴n=5 Hence, lengths of the side of the triangle are 4,5 and 6. Reply
Answer:
Correct option is
B
4,5,6
Using sine law,
n−1
sinα
=
n+1
sin2α
⇒2cosα=
(n−1)
n+1
⇒cosα=
2(n−1)
n+1
∴
2n(n+1)
n
2
+(n+1)
2
−(n−1)
2
=
2(n−1)
(n+1)
(using cosine law)
⇒
2n+(n+1)
n
2
+4n
=
2(n−1)
(n+1)
⇒
2(n+1)
n+4
=
2(n−1)
n+1
⇒(n+1)
2
=(n+4)(n−1)
∴n=5
Hence, lengths of the side of the triangle are 4,5 and 6.