the area of a circle is A = (px² + 6xp + 9p)m². find the radius of the circle. [ hint: (a²+2ab+b²) = (a+b)²]​

the area of a circle is A = (px² + 6xp + 9p)m². find the radius of the circle. [ hint: (a²+2ab+b²) = (a+b)²]​

About the author
Everleigh

1 thought on “the area of a circle is A = (px² + 6xp + 9p)m². find the radius of the circle. [ hint: (a²+2ab+b²) = (a+b)²]​”

  1. Answer:

    x+3

    Step-by-step explanation:

    Step-by-step explanation:[tex]p {x}^{2} + 6xp + 9 {p} \\ ={( \sqrt{p} \times x)}^{2} + 2 \times( 3 \times \sqrt{p} ) \times \sqrt{p} + (3 \times \sqrt{p} )^{2} \\ = (\sqrt{p} x + 3 \sqrt{p} )^{2} [/tex]

    Step-by-step explanation:[tex]p {x}^{2} + 6xp + 9 {p} \\ ={( \sqrt{p} \times x)}^{2} + 2 \times( 3 \times \sqrt{p} ) \times \sqrt{p} + (3 \times \sqrt{p} )^{2} \\ = (\sqrt{p} x + 3 \sqrt{p} )^{2} [/tex][tex]r = \sqrt{ \frac{area}{\pi} } = \sqrt{ \frac{ {( \sqrt{p} x + 3 \sqrt{p} ) }^{2} }{\pi} } \\ = \frac{ \sqrt{p} x + 3 \sqrt{p} }{ \sqrt{\pi} } = \frac{ \sqrt{p} (x + 3)}{ \sqrt{\pi} } = (x + 3) \times \sqrt{ \frac{p}{\pi} } [/tex]

    Step-by-step explanation:[tex]p {x}^{2} + 6xp + 9 {p} \\ ={( \sqrt{p} \times x)}^{2} + 2 \times( 3 \times \sqrt{p} ) \times \sqrt{p} + (3 \times \sqrt{p} )^{2} \\ = (\sqrt{p} x + 3 \sqrt{p} )^{2} [/tex][tex]r = \sqrt{ \frac{area}{\pi} } = \sqrt{ \frac{ {( \sqrt{p} x + 3 \sqrt{p} ) }^{2} }{\pi} } \\ = \frac{ \sqrt{p} x + 3 \sqrt{p} }{ \sqrt{\pi} } = \frac{ \sqrt{p} (x + 3)}{ \sqrt{\pi} } = (x + 3) \times \sqrt{ \frac{p}{\pi} } [/tex]well this is the final answer if p is a random variable. but if you wanted to refer to pi by p the the answer is simply x+3

    Hope thus helps you. PLEASE MARK ME AS THE BRAINLIEST.

    Reply

Leave a Comment