the angles of a quadrilateral are in the ratio 1:3:5:6 find its greatest angle About the author Alexandra
Step-by-step explanation: Answer in full explanation:– _______________________ 1x +3x + 5x + 6x = 360 15x = 360 x = 360/15 x = 24 6x = 24 × 6 = 144 Reply
[tex]\large {\pmb{\mathfrak{☆ \: Given:}}}[/tex] The angles of a quadrilateral are in the ratio of 1:3:5:6. [tex] \\ [/tex] [tex]\large {\pmb{\mathfrak{☆ \: \: To \: find:}}}[/tex] We have to find the greatest angle in the quadrilateral. [tex] \\ [/tex] [tex]\large {\pmb{\mathfrak{☆ \: \: Solution: }}}[/tex] We know that, sum of all the angles in a quadrilateral = 360°. Let the unknown constant be x. [tex]\sf :\implies x+3x+5x+6x=360\degree[/tex] [tex]\sf :\implies 15x=360\degree[/tex] [tex]\sf :\implies x= \dfrac{360\degree}{15} [/tex] [tex]\boxed{\pmb{\sf {\therefore \: x=24\degree}}}[/tex] Now, substituting x = 24° in the ratios : [tex]\sf :\implies \measuredangle1: \pmb{\sf x=24\degree}[/tex] [tex]\sf :\implies \measuredangle2:{\pmb{\sf{3x=3(24\degree)=72\degree}}}[/tex] [tex]\sf :\implies \measuredangle3:{\pmb{\sf{5x=5(24\degree)=120 \degree}}}[/tex] [tex]\sf :\implies \measuredangle4:{\pmb{\sf{6(24\degree)=144 \degree}}}[/tex] [tex]\boxed{\pmb{\sf{\therefore \: Greatest \: angle =144\degree}}}[/tex] [tex] \\ [/tex] [tex]\large {\pmb{\mathfrak{☆ \: \: Verification:}}}[/tex] Let’s verify whether the angles add upto 360° or not : [tex]\sf :\implies x+3x+5x+6x=360\degree[/tex] [tex]\sf :\implies 24\degree+3(24\degree)+5(24\degree)+6(24\degree)=360[/tex] [tex]\sf :\implies 24\degree+72\degree+120 \degree + 144 \degree = 360 \degree[/tex] [tex]\sf:\implies 96\degree+264 \degree = 360 \degree[/tex] [tex]\sf :\implies {360\degree=360\degree}[/tex] [tex]\boxed{\pmb{\sf{Hence, ~ verified!}}}[/tex] [tex] \\ [/tex] Reply
Step-by-step explanation:
Answer in full explanation:–
_______________________
1x +3x + 5x + 6x = 360
15x = 360
x = 360/15
x = 24
6x = 24 × 6
= 144
[tex]\large {\pmb{\mathfrak{☆ \: Given:}}}[/tex]
The angles of a quadrilateral are in the ratio of 1:3:5:6.
[tex] \\ [/tex]
[tex]\large {\pmb{\mathfrak{☆ \: \: To \: find:}}}[/tex]
We have to find the greatest angle in the quadrilateral.
[tex] \\ [/tex]
[tex]\large {\pmb{\mathfrak{☆ \: \: Solution: }}}[/tex]
We know that, sum of all the angles in a quadrilateral = 360°.
Let the unknown constant be x.
[tex]\sf :\implies x+3x+5x+6x=360\degree[/tex]
[tex]\sf :\implies 15x=360\degree[/tex]
[tex]\sf :\implies x= \dfrac{360\degree}{15} [/tex]
[tex]\boxed{\pmb{\sf {\therefore \: x=24\degree}}}[/tex]
Now, substituting x = 24° in the ratios :
[tex]\sf :\implies \measuredangle1: \pmb{\sf x=24\degree}[/tex]
[tex]\sf :\implies \measuredangle2:{\pmb{\sf{3x=3(24\degree)=72\degree}}}[/tex]
[tex]\sf :\implies \measuredangle3:{\pmb{\sf{5x=5(24\degree)=120 \degree}}}[/tex]
[tex]\sf :\implies \measuredangle4:{\pmb{\sf{6(24\degree)=144 \degree}}}[/tex]
[tex]\boxed{\pmb{\sf{\therefore \: Greatest \: angle =144\degree}}}[/tex]
[tex] \\ [/tex]
[tex]\large {\pmb{\mathfrak{☆ \: \: Verification:}}}[/tex]
Let’s verify whether the angles add upto 360° or not :
[tex]\sf :\implies x+3x+5x+6x=360\degree[/tex]
[tex]\sf :\implies 24\degree+3(24\degree)+5(24\degree)+6(24\degree)=360[/tex]
[tex]\sf :\implies 24\degree+72\degree+120 \degree + 144 \degree = 360 \degree[/tex]
[tex]\sf:\implies 96\degree+264 \degree = 360 \degree[/tex]
[tex]\sf :\implies {360\degree=360\degree}[/tex]
[tex]\boxed{\pmb{\sf{Hence, ~ verified!}}}[/tex]
[tex] \\ [/tex]