[tex]\sf \pink {Maths\: legends\: need \:help…!! }[/tex]
[tex]\\\\[/tex]
[tex]\large \red ✿\mathtt{\bold{ Prove\: tha

By Ava

[tex]\sf \pink {Maths\: legends\: need \:help…!! }[/tex]
[tex]\\\\[/tex]
[tex]\large \red ✿\mathtt{\bold{ Prove\: that:-}}[/tex]
[tex]\\\\[/tex]
[tex]\displaystyle\sf P(n): \left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)\dots\left(1+\frac{2n+1}{n^2}\right)=(n+1)^2[/tex]

[tex]\\\\[/tex]​

About the author
Ava

2 thoughts on “[tex]\sf \pink {Maths\: legends\: need \:help…!! }[/tex]<br />[tex]\\\\[/tex]<br />[tex]\large \red ✿\mathtt{\bold{ Prove\: tha”

  1. Step-by-step explanation:

    let p(n):(1+3/1)(1+5/4)(1+7/9)(1+2n+1/n^2)=(n+1)^2

    for n=1 :lhs=(1+3/1)=4.

    Rhs=(1+1)^2=4

    therefore,p(1)=true

    let us assume p(k) is true for some k is element of N

    i.e (1+3/1)(1+5/4)(1+7/9)(1+2k+1/n^2)=(k+1)^2

    =(k+1)^2[1+2k+3/(k+1)^2]=(k+1)^2 + 2k + 3

    =k^2+4k+4=[k+2]^2 = (k + 1) ^+ 2k + 3

    =k^2+4k+4=[k+2]^2= [(k + 1)+1]^2

    which is P(k+1)

    hence by mathematical induction p(n) is true for all

    n E N

    Reply
  2. Solution :-

    [tex]\displaystyle\sf P(n): \left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)\dots\left(1+\frac{2n+1}{n^2}\right)=(n+1)^2[/tex]

    For n = 1,

    [tex] : \implies \sf P(1) = \left(1+\dfrac{(2 \times 1)+1}{1^2}\right)= (1+1)^2 [/tex]

    [tex]: \implies \sf P(1) = \left(1+\dfrac{3}{1}\right)= 2^2[/tex]

    [tex]: \implies \sf P(1) =4= 4[/tex]

    Thus P(n) is true for n = 1.

    Assume that P(k) is true.

    ie,

    [tex] \sf \displaystyle \left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right)\dots\left(1+\frac{2k+1}{k^2}\right)=(k+1)^2[/tex]

    We shall now prove that P(k+1) is true.

    [tex] : \implies \sf LHS \: of \: P(k+1) =(k + 1) ^{2} \cdot \left( 1 + \dfrac{2k + 3}{ {(k + 1)}^{2} } \right)[/tex]

    [tex]: \implies \sf LHS \: of \: P(k+1) =(k + 1) ^{2} \cdot \left( \dfrac{(k + 1) ^{2} + 2k + 3}{(k + 1) ^{2} } \right)[/tex]

    [tex] : \implies \sf LHS \: of \: P(k+1) =(k + 1) ^{2} + 2k + 3[/tex]

    [tex]: \implies \sf LHS \: of \: P(k+1) = {k}^{2} + 2k + 1 + 2k + 3[/tex]

    [tex]: \implies \sf LHS \: of \: P(k+1) = {k}^{2} + 4k + 4[/tex]

    [tex] : \implies \sf LHS \: of \: P(k+1) =(k + 2) ^{2} [/tex]

    [tex]: \implies \sf LHS \: of \: P(k+1) =(\overline{k + 1 }+ 1) ^{2} [/tex]

    [tex]: \implies \sf LHS \: of \: P(k+1) =RHS \: of \: P(k+1)[/tex]

    Thus P(k+1) is true whenever P(k) is true.

    Hence, by the principle of mathematical induction P(n) is true for all n∈N.

    Reply

Leave a Comment