[tex] \large \mathbb \blue{ \fcolorbox{blue}{black}{ \: \:⫷ ⫷ \: \: Q : U :E : S : T : I : O : N \: \: ⫸⫸ \: }}[/tex] Solve the quadratic equation x²+7x-60=0 by Quadratic formula method. About the author Serenity
GIVEN x² + 7x – 60 Using quadratic formula [tex] \boxed{ \red { \pmb{x = \frac{ -b±√b²-4ac}{2a}}}}[/tex] Here, a = 1 , b = 7 & c = -60 [tex] \bf \: \: x= \cfrac{ -7± \sqrt{7²-4(1)(-60)}}{2(1)}[/tex] [tex] \bf \: x= \cfrac{-7± \sqrt{49+240}}{2}[/tex] [tex] \bf \: x= \cfrac{ -7±√289}{2}[/tex] Discriminant, b²- 4ac is greater than zero, That means there will be two real & distinct roots. [tex] \bf \: x= \cfrac{ -7±17}{2}[/tex] [tex] \large \boxed{ \bold{ \blue{x= 5 \: \: or \: -12}}}[/tex] Reply
GIVEN
x² + 7x – 60
Using quadratic formula
[tex] \boxed{ \red { \pmb{x = \frac{ -b±√b²-4ac}{2a}}}}[/tex]
Here, a = 1 , b = 7 & c = -60
[tex] \bf \: \: x= \cfrac{ -7± \sqrt{7²-4(1)(-60)}}{2(1)}[/tex]
[tex] \bf \: x= \cfrac{-7± \sqrt{49+240}}{2}[/tex]
[tex] \bf \: x= \cfrac{ -7±√289}{2}[/tex]
Discriminant, b²- 4ac is greater than zero,
[tex] \bf \: x= \cfrac{ -7±17}{2}[/tex]
[tex] \large \boxed{ \bold{ \blue{x= 5 \: \: or \: -12}}}[/tex]
x² −7x−60=0
or, x²−12x+5x−60=0
or, x(x−12)+5(x−12)=0
or, (x−12)(x+5)=0
or, x=12,−5.