[tex]If \: x = \frac{ \sqrt{a + 2b} + \sqrt{a + 2b} }{ \sqrt{a + 2b} – \sqrt{a – 2b} } , \: prove \: that \: {bx}^{2}

By Luna

[tex]If \: x = \frac{ \sqrt{a + 2b} + \sqrt{a + 2b} }{ \sqrt{a + 2b} – \sqrt{a – 2b} } , \: prove \: that \: {bx}^{2} – ax + b = 0.[/tex]
Only that user solve this question who know.
Wrong answer will be reported.

About the author
Luna

2 thoughts on “<br />[tex]If \: x = \frac{ \sqrt{a + 2b} + \sqrt{a + 2b} }{ \sqrt{a + 2b} – \sqrt{a – 2b} } , \: prove \: that \: {bx}^{2}”

  1. Step-by-step explanation:

    Question:

    [tex]If \: x = \frac{ \sqrt{a + 2b} + \sqrt{a + 2b} }{ \sqrt{a + 2b} – \sqrt{a – 2b} } , \: prove \: that \: {bx}^{2} – ax + b = 0.[/tex]

    To prove:

    that bx²-ax+b=0

    Solution:

    x = $\frac{\sqrt{{a}\mathrm{{+}}{2}{b}}\mathrm{{+}}\sqrt{{a}\mathrm{{-}}{2}{b}}}{\sqrt{{a}\mathrm{{+}}{2}{b}}\mathrm{{-}}\sqrt{{a}\mathrm{{-}}{2}{b}}}$×$\frac{\sqrt{{a}\mathrm{{+}}{2}{b}}\mathrm{{+}}\sqrt{{a}\mathrm{{-}}{2}{b}}}{\sqrt{{a}\mathrm{{+}}{2}{b}}\mathrm{{+}}\sqrt{{a}\mathrm{{-}}{2}{b}}}$

    = $\frac{{\mathrm{(}}\sqrt{{a}\mathrm{{+}}{2}{b}}\mathrm{{+}}\sqrt{{a}\mathrm{{-}}{2}{b}}{\mathrm{)}}^{2}}{{\mathrm{(}}\sqrt{{a}\mathrm{{+}}{2}{b}}{\mathrm{)}}^{2}\mathrm{{-}}\sqrt{{a}\mathrm{{-}}{2}{b}}{\mathrm{)}}^{2}}$

    =$\frac{{a}\mathrm{{+}}{2}{b}\mathrm{{+}}{a}\mathrm{{-}}{2}{b}\mathrm{{+}}{2}\mathrm{{-}}\sqrt{{a}^{2}\mathrm{{-}}{4}{b}^{2}}}{{a}\mathrm{{+}}{2}{b}\mathrm{{-}}{\mathrm{(}}{a}\mathrm{{-}}{2}{b}{\mathrm{)}}}$

    =>$\frac{{a}\mathrm{{+}}\sqrt{{a}^{2}\mathrm{{-}}{4}{b}^{2}}}{2b}$

    => $\fbox{${{2}{bx}\mathrm{{=}}{a}\mathrm{{+}}\sqrt{{a}^{2}\mathrm{{-}}{4}{b}^{2}}}$}$

    => $\fbox{${{2}{bx}\mathrm{{-}}{a}\mathrm{{=}}\sqrt{{a}^{2}\mathrm{{-}}{4}{b}^{2}}}$}$

    Squaring on both sides,we get

    (2bx-a²) = a²-4b²

    => 4b²x²+a²-4abx-a²+4b² = 0

    => 4b²x²-4abx+4b² = 0 => 4(b²x²-abx+b²) = 0

    => b²x²-abx+b² = 0 => b(bx²-ax+b) = 0

    => bx²-ax+b = 0 Hence, proved.

    [tex]giving \: answer \: in \: 2 \: min[/tex]

    Reply

Leave a Comment