[tex]if \: {5}^{2x – 1} = {25}^{x – 1} + 100 .[/tex]
find the value of x.​

[tex]if \: {5}^{2x – 1} = {25}^{x – 1} + 100 .[/tex]
find the value of x.​

About the author
Savannah

2 thoughts on “<br />[tex]if \: {5}^{2x – 1} = {25}^{x – 1} + 100 .[/tex]<br />find the value of x.​”

  1. Step-by-step explanation:

    Given :

    [tex] {5}^{2x – 1} = {25}^{x – 1} + 100[/tex]

    Find :

    The value of x.

    Solution :

    [tex] = > {5}^{2x – 1} = ( {5}^{2} )^{x – 1} + 100[/tex]

    [tex] = > {5}^{2x – 1} – {5}^{2x – 2} = 100[/tex]

    [tex] = > {5}^{2x – 2}. {5}^{1} – {5}^{2x – 2} = 100[/tex]

    [tex] = > {5}^{2x – 2} (5 – 1) = 100[/tex]

    [tex] = > {5}^{2x – 2} \times 4 = 100[/tex]

    [tex] = > {5}^{2x – 2} = 25[/tex]

    [tex] = > {5}^{2x – 2} = {5}^{2} [/tex]

    [tex] = > 2x – 2 = 2[/tex]

    [tex] = > 2x = 4[/tex]

    [tex] = > x = \frac{4}{2} [/tex]

    [tex] = > x = 2.[/tex]

    Hence :

    The value of x is 2.

    Brainly Question number :

    https://brainly.in/question/39879530?utm_source=android&utm_medium=share&utm_campaign=question

    Reply
  2. 2x−2=52x−1−100

    shift 52x−2 to the left hand side

    Now, Multiply the equation with -1

    52x−1−52x−2=100

    52x−2(5−1)=100

    52x−2=4100

    25x−1=25 ( ∵ 52x−2=(52)x−1)

    now,

    x−1=1

    x=2

    Reply

Leave a Comment