[tex]\displaystyle \int_0^{ \frac{\pi}{2} } cos^5 x\ dx = \:?\: [/tex] Solve the math by ” Wallie’s theorem ” with explanation. Answer : [tex] \frac{8}{15}[/tex] Don’t spamming. About the author Brielle
Solution!! [tex]\displaystyle \int_0^{ \frac{\pi}{2} } cos^5 x\ dx = \:?\: [/tex] We have to solve this using Wallis’ theorem. As we can observe, the power is 5 which is an odd number. So, in this case, [tex]\displaystyle \int_{0}^{\frac{\pi}{2}}\sin ^{n}x\ dx =\displaystyle \int_{0}^{\frac{\pi}{2}}\cos ^{n}x\ dx =\dfrac{(n-1)(n-3)}{(n-0)(n-2)(n-4)}[/tex] Here, n is the odd number which in this case is 5. Let’s solve! [tex]=\dfrac{(5-1)(5-3)}{(5-0)(5-2)(5-4)}[/tex] [tex]=\dfrac{(4\times 2}{5\times 3\times 1}[/tex] [tex]=\dfrac{8}{15}[/tex] Another method! [tex]\to \displaystyle \int_0^{ \frac{\pi}{2} } cos^5 x\ dx[/tex] To evaluate the definite integral, first evaluate the indefinite integral. [tex]\to \int \cos ^{5}x\ dx[/tex] Write the expression as a product with the factor [tex]\cos ^{4}x[/tex]. [tex]\to \int \cos ^{4}x\cos x\ dx[/tex] Use the substitution [tex]t=\sin x[/tex] to transform the integral. [tex]\to \int 1-2t^{2}+t^{4}\ dt[/tex] Use the property of integral [tex]\int f(x)\pm g(x)dx =\int f(x)dx\pm \int g(x)dx[/tex]. [tex]\to \int 1dt-\int 2t^{2}dt+\int t^{4}dt[/tex] Use [tex]\int 1dx=x[/tex] to evaluate the integral. [tex]\to t-\int 2t^{2}dt+\int t^{4}dt[/tex] Evaluate the indefinite integral. [tex]\to t-\dfrac{2t^{3}}{3}+\int t^{4}dt[/tex] Use [tex]\int x^{n}dx=\dfrac{x^{n+1}}{n+1},n\neq -1[/tex] to evaluate the integral. [tex]\to t-\dfrac{2t^{3}}{3}+\dfrac{t^{5}}{5}[/tex] Substitute back [tex]t=\sin x[/tex]. [tex]\to \sin x-\dfrac{2\sin ^{3}x}{3}+\dfrac{\sin ^{5}x}{5}[/tex] To evaluate the definite integral, return the limits of integration. [tex]\to \left. \left(\sin x-\dfrac{2\sin ^{3}x}{3}+\dfrac{\sin ^{5}x}{5}\right)\right|_{0}^{\frac{\pi }{2}}[/tex] Calculate the expression using [tex]\left. F(x)\right|_{a}^{b}=F(b)-F(a)[/tex]. [tex]\to \sin \dfrac{\pi}{2}-\dfrac{2\sin ^{3}\left(\dfrac{\pi}{2}\right)}{3}+\dfrac{\sin ^{5}\left(\dfrac{\pi}{2}\right)}{5}-\left(\sin 0-\dfrac{2\sin ^{3}0}{3}+\dfrac{\sin ^{5}0}{5}\right)[/tex] Calculate the expression. [tex]\to 1-\dfrac{2\times 1^{3}}{3}+\dfrac{1^{5}}{5}-\left(0-\dfrac{2\times 0^{3}}{3}+\dfrac{0^{5}}{5}\right)[/tex] Simplify the expression. [tex]\to 1-\dfrac{2\times 1}{3}+\dfrac{1}{5}-\left(0-\dfrac{2\times 0}{3}+\dfrac{0}{5}\right)[/tex] [tex]\to 1-\dfrac{2}{3}+\dfrac{1}{5}-\left(-\dfrac{0}{3}+0\right)[/tex] [tex]\to 1-\dfrac{2}{3}+\dfrac{1}{5}-(-0)[/tex] [tex]\to 1-\dfrac{2}{3}+\dfrac{1}{5}+0[/tex] [tex]\to \dfrac{8}{15}[/tex] Reply
Step-by-step explanation: Given: [tex]\displaystyle \int_0^{ \frac{\pi}{2} } cos^5 x\ dx = \:?\: [/tex] To find: Definite integral using “Wallie’s theorem” Solution: Tip: Wallie’s theorem for odd power [tex] \boxed{\int_0^{ \frac{\pi}{2} } cos^nx\ dx = \int_0^{ \frac{\pi}{2} } sin^nx\ dx = \frac{2.4.6….(n – 1)}{1.3.5….n} }[/tex] Here, n is odd and it’s value is 5. Put the value of n in the formula of Wallie’s theorem. Numerator has only two terms ,because (5-1)=4 and denominator have to write upto 3 terms 1.3.5 only. [tex]\int_0^{ \frac{\pi}{2} } cos^5x\ dx = \frac{2.(5 – 1)}{1.3.5} \\ \\ \int_0^{ \frac{\pi}{2} } cos^5x\ dx = \frac{2.4}{1.3.5} \\ \\ \int_0^{ \frac{\pi}{2} } cos^5x\ dx = \frac{8}{15} \\ \\ [/tex] Final Answer: [tex] \boxed{ \bold{\int_0^{ \frac{\pi}{2} } cos^5x\ dx = \frac{8}{15} }}\\ \\ [/tex] Hope it helps you. To learn more on brainly: integration of e^x(1-sinx)/(1-cosx) https://brainly.in/question/9459283 Reply
Solution!!
[tex]\displaystyle \int_0^{ \frac{\pi}{2} } cos^5 x\ dx = \:?\: [/tex]
We have to solve this using Wallis’ theorem. As we can observe, the power is 5 which is an odd number. So, in this case,
[tex]\displaystyle \int_{0}^{\frac{\pi}{2}}\sin ^{n}x\ dx =\displaystyle \int_{0}^{\frac{\pi}{2}}\cos ^{n}x\ dx =\dfrac{(n-1)(n-3)}{(n-0)(n-2)(n-4)}[/tex]
Here, n is the odd number which in this case is 5. Let’s solve!
[tex]=\dfrac{(5-1)(5-3)}{(5-0)(5-2)(5-4)}[/tex]
[tex]=\dfrac{(4\times 2}{5\times 3\times 1}[/tex]
[tex]=\dfrac{8}{15}[/tex]
Another method!
[tex]\to \displaystyle \int_0^{ \frac{\pi}{2} } cos^5 x\ dx[/tex]
To evaluate the definite integral, first evaluate the indefinite integral.
[tex]\to \int \cos ^{5}x\ dx[/tex]
Write the expression as a product with the factor [tex]\cos ^{4}x[/tex].
[tex]\to \int \cos ^{4}x\cos x\ dx[/tex]
Use the substitution [tex]t=\sin x[/tex] to transform the integral.
[tex]\to \int 1-2t^{2}+t^{4}\ dt[/tex]
Use the property of integral [tex]\int f(x)\pm g(x)dx =\int f(x)dx\pm \int g(x)dx[/tex].
[tex]\to \int 1dt-\int 2t^{2}dt+\int t^{4}dt[/tex]
Use [tex]\int 1dx=x[/tex] to evaluate the integral.
[tex]\to t-\int 2t^{2}dt+\int t^{4}dt[/tex]
Evaluate the indefinite integral.
[tex]\to t-\dfrac{2t^{3}}{3}+\int t^{4}dt[/tex]
Use [tex]\int x^{n}dx=\dfrac{x^{n+1}}{n+1},n\neq -1[/tex] to evaluate the integral.
[tex]\to t-\dfrac{2t^{3}}{3}+\dfrac{t^{5}}{5}[/tex]
Substitute back [tex]t=\sin x[/tex].
[tex]\to \sin x-\dfrac{2\sin ^{3}x}{3}+\dfrac{\sin ^{5}x}{5}[/tex]
To evaluate the definite integral, return the limits of integration.
[tex]\to \left. \left(\sin x-\dfrac{2\sin ^{3}x}{3}+\dfrac{\sin ^{5}x}{5}\right)\right|_{0}^{\frac{\pi }{2}}[/tex]
Calculate the expression using [tex]\left. F(x)\right|_{a}^{b}=F(b)-F(a)[/tex].
[tex]\to \sin \dfrac{\pi}{2}-\dfrac{2\sin ^{3}\left(\dfrac{\pi}{2}\right)}{3}+\dfrac{\sin ^{5}\left(\dfrac{\pi}{2}\right)}{5}-\left(\sin 0-\dfrac{2\sin ^{3}0}{3}+\dfrac{\sin ^{5}0}{5}\right)[/tex]
Calculate the expression.
[tex]\to 1-\dfrac{2\times 1^{3}}{3}+\dfrac{1^{5}}{5}-\left(0-\dfrac{2\times 0^{3}}{3}+\dfrac{0^{5}}{5}\right)[/tex]
Simplify the expression.
[tex]\to 1-\dfrac{2\times 1}{3}+\dfrac{1}{5}-\left(0-\dfrac{2\times 0}{3}+\dfrac{0}{5}\right)[/tex]
[tex]\to 1-\dfrac{2}{3}+\dfrac{1}{5}-\left(-\dfrac{0}{3}+0\right)[/tex]
[tex]\to 1-\dfrac{2}{3}+\dfrac{1}{5}-(-0)[/tex]
[tex]\to 1-\dfrac{2}{3}+\dfrac{1}{5}+0[/tex]
[tex]\to \dfrac{8}{15}[/tex]
Step-by-step explanation:
Given:
[tex]\displaystyle \int_0^{ \frac{\pi}{2} } cos^5 x\ dx = \:?\: [/tex]
To find: Definite integral using “Wallie’s theorem”
Solution:
Tip: Wallie’s theorem for odd power
[tex] \boxed{\int_0^{ \frac{\pi}{2} } cos^nx\ dx = \int_0^{ \frac{\pi}{2} } sin^nx\ dx = \frac{2.4.6….(n – 1)}{1.3.5….n} }[/tex]
Here,
n is odd and it’s value is 5.
Put the value of n in the formula of Wallie’s theorem. Numerator has only two terms ,because (5-1)=4
and denominator have to write upto 3 terms 1.3.5 only.
[tex]\int_0^{ \frac{\pi}{2} } cos^5x\ dx = \frac{2.(5 – 1)}{1.3.5} \\ \\ \int_0^{ \frac{\pi}{2} } cos^5x\ dx = \frac{2.4}{1.3.5} \\ \\ \int_0^{ \frac{\pi}{2} } cos^5x\ dx = \frac{8}{15} \\ \\ [/tex]
Final Answer:
[tex] \boxed{ \bold{\int_0^{ \frac{\pi}{2} } cos^5x\ dx = \frac{8}{15} }}\\ \\ [/tex]
Hope it helps you.
To learn more on brainly:
integration of e^x(1-sinx)/(1-cosx)
https://brainly.in/question/9459283