Answer: [tex] \frac{289}{5184} \\ [/tex] Step-by-step explanation: [tex]( {8}^{ – 2} + {9}^{ – 2} + {6}^{ – 2} ) \\ \\ = ( \frac{1}{ {8}^{2} } + \frac{1}{ {9}^{2} } + \frac{1}{ {6}^{2} } ) \\ \\ = ( \frac{1}{64} + \frac{1}{81} + \frac{1}{36} ) \\ \\ (lcm \: of \: 64 \: 81 \: and \: 36 \: is \: 5184) \\ \\ = ( \frac{(1 \times 81) + (1 \times 64) + (1 \times 144)}{5184} \\ \\ = ( \frac{81 + 64 + 144}{5184}) \\ \\ = \frac{289}{5184} [/tex] Hence [tex] {9}^{ – 2} + {8}^{ – 2} + {6}^{ – 2} = \frac{289}{5184} [/tex] hope it helps. Reply
Step-by-step explanation:
8-²+9-²+6-²
=√8+√9+√6
=2√2+3+√6
=5√2+√6
Answer:
[tex] \frac{289}{5184} \\ [/tex]
Step-by-step explanation:
[tex]( {8}^{ – 2} + {9}^{ – 2} + {6}^{ – 2} ) \\ \\ = ( \frac{1}{ {8}^{2} } + \frac{1}{ {9}^{2} } + \frac{1}{ {6}^{2} } ) \\ \\ = ( \frac{1}{64} + \frac{1}{81} + \frac{1}{36} ) \\ \\ (lcm \: of \: 64 \: 81 \: and \: 36 \: is \: 5184) \\ \\ = ( \frac{(1 \times 81) + (1 \times 64) + (1 \times 144)}{5184} \\ \\ = ( \frac{81 + 64 + 144}{5184}) \\ \\ = \frac{289}{5184} [/tex]
Hence
[tex] {9}^{ – 2} + {8}^{ – 2} + {6}^{ – 2} = \frac{289}{5184} [/tex]
hope it helps.