Sorry, it’s a typo.

Challenge- Math(3/5 Difficulty)
Solve [tex]\sqrt{2x+3} -\sqrt{2x-5} =\dfrac{8}{7}[/tex].

Sorry, it’s a typo.

Challenge- Math(3/5 Difficulty)
Solve [tex]\sqrt{2x+3} -\sqrt{2x-5} =\dfrac{8}{7}[/tex].
*Note it’s subtraction instead of addition.

Solution is [tex]x=\dfrac{2661}{392}[/tex].

About the author
Lydia

2 thoughts on “Sorry, it’s a typo.<br /><br /> Challenge- Math(3/5 Difficulty)<br /> Solve [tex]\sqrt{2x+3} -\sqrt{2x-5} =\dfrac{8}{7}[/tex].<br”

  1. Given equation: [tex]\sqrt{2x+3} -\sqrt{2x-5} =\dfrac{8}{7}[/tex] …[1]

    Solution

    Consider [tex]\sqrt{2x+3} +\sqrt{2x-5} =k[/tex]. …[2]

    Multiplying two equations we get,

    [tex](2x+3)-(2x-5)=\dfrac{8k}{7}[/tex]

    [tex]\implies 3+5=\dfrac{8k}{7}[/tex]

    [tex]\implies \dfrac{8k}{7} =8[/tex]

    [tex]\implies k=7[/tex]

    Therefore, we have a system equation,

    [tex]\begin{cases} & \sqrt{2x+3} +\sqrt{2x-5} =7 \\ & \sqrt{2x+3} -\sqrt{2x-5} =\dfrac{8}{7} \end{cases}[/tex]

    And therefore,

    [tex]\begin{cases} & \sqrt{2x+3} = \dfrac{57}{14} \\ & \sqrt{2x-5} = \dfrac{41}{14}\end{cases}[/tex]

    Solving one of the equation, we get

    [tex]x=\dfrac{2661}{392}[/tex]

    ✓ Required answer.

    Reply
  2. [tex]\texttt{\textsf{\large{\underline{Solution}:}}}[/tex]

    We have to find out x.

    Given,

    [tex]\tt\implies \sqrt{2x+3}-\sqrt{2x-5}=\dfrac{8}{7}[/tex]

    Multiplying both sides by 7, we get,

    [tex]\tt\implies7(\sqrt{2x+3}-\sqrt{2x-5})=8[/tex]

    [tex]\tt\implies 7\sqrt{2x+3}-7\sqrt{2x-5}=8[/tex]

    [tex]\tt\implies 7\sqrt{2x+3}=7\sqrt{2x-5}+8[/tex]

    Squaring both sides, we get,

    [tex]\tt\implies (7\sqrt{2x+3})^{2}=(7\sqrt{2x-5}+8)^{2}[/tex]

    [tex]\tt\implies 49(2x+3)=(7\sqrt{2x-5})^{2}+(8)^{2} + 2\times8\times(7\sqrt{2x-5})[/tex]

    [tex]\tt\implies 49(2x+3)=49(2x-5)+64 + 112\sqrt{2x-5}[/tex]

    [tex]\tt\implies 98x+147=98x-245+64 + 112\sqrt{2x-5}[/tex]

    Cancel out like terms. We get,

    [tex]\tt\implies 147=-245+64 + 112\sqrt{2x-5}[/tex]

    [tex]\tt\implies 147+245-64=112\sqrt{2x-5}[/tex]

    [tex]\tt\implies 328=112\sqrt{2x-5}[/tex]

    [tex]\tt\implies \sqrt{2x-5}=\dfrac{328}{112}[/tex]

    [tex]\tt\implies \sqrt{2x-5}=\dfrac{41}{14}[/tex]

    Squaring both sides, we get,

    [tex]\tt\implies 2x-5=\dfrac{1681}{196}[/tex]

    Adding 5 from both sides, we get,

    [tex]\tt\implies 2x=\dfrac{1681}{196}+5[/tex]

    [tex]\tt\implies 2x=\dfrac{1681+5\times196}{196}[/tex]

    [tex]\tt\implies 2x=\dfrac{1681+980}{196}[/tex]

    [tex]\tt\implies 2x=\dfrac{2661}{196}[/tex]

    Dividing both sides by 2, we get,

    [tex]\tt\implies x=\dfrac{2661}{392}[/tex]

    ⊕ This is the required answer for the question.

    [tex]\texttt{\textsf{\large{\underline{Answer}:}}}[/tex]

    • x = 2661/392
    Reply

Leave a Comment