Solve the following pair of linear equations by the substitution method : 5x + 6y = 14, 3x – 2y = –14 About the author Isabella
Answer: [tex]5x = 14 – 6y \\ x = \frac{14 – 6y}{5} \\ 3( \frac{14 – 6y}{5} ) – 2y = – 14\\ \frac{42 – 18y}{5} – 2y = – 14 \\ \frac{42 – 18y – 10y}{5} = – 14 \\ \frac{42 – 28y}{5} = – 14 \\ 42 – 28y = – 70 \\ 28y = 112 \\ y = \frac{112}{28} = 4 \\ put \: in \: 1 \\ \frac{14 – 6 \times 4}{5} = \frac{ – 10}{5} = – 2[/tex] Reply
Answer:
[tex]5x = 14 – 6y \\ x = \frac{14 – 6y}{5} \\ 3( \frac{14 – 6y}{5} ) – 2y = – 14\\ \frac{42 – 18y}{5} – 2y = – 14 \\ \frac{42 – 18y – 10y}{5} = – 14 \\ \frac{42 – 28y}{5} = – 14 \\ 42 – 28y = – 70 \\ 28y = 112 \\ y = \frac{112}{28} = 4 \\ put \: in \: 1 \\ \frac{14 – 6 \times 4}{5} = \frac{ – 10}{5} = – 2[/tex]