Answer: [tex]if \: \sin( \alpha ) = \frac{1}{2} [/tex] [tex] (ac {)}^{2} = (ab {)}^{2} + (bc {)}^{2} [/tex] [tex](hyp {)}^{2} = (opp {)}^{2} + (adj {)}^{2} [/tex] [tex]hyp = 2. \: \: \: \: opp = 1[/tex] [tex](2 {)}^{2} = (1 {)}^{2} + (adj {)}^{2} [/tex] [tex]adj = \sqrt{3} [/tex] [tex] \cos( \alpha ) = \frac{ \sqrt{3} }{2} [/tex] [tex] \tan( \alpha ) = \frac{1}{ \sqrt{3} } [/tex] Reply
Answer:
[tex]if \: \sin( \alpha ) = \frac{1}{2} [/tex]
[tex] (ac {)}^{2} = (ab {)}^{2} + (bc {)}^{2} [/tex]
[tex](hyp {)}^{2} = (opp {)}^{2} + (adj {)}^{2} [/tex]
[tex]hyp = 2. \: \: \: \: opp = 1[/tex]
[tex](2 {)}^{2} = (1 {)}^{2} + (adj {)}^{2} [/tex]
[tex]adj = \sqrt{3} [/tex]
[tex] \cos( \alpha ) = \frac{ \sqrt{3} }{2} [/tex]
[tex] \tan( \alpha ) = \frac{1}{ \sqrt{3} } [/tex]