[tex]\large\underline{\sf{Solution-}}[/tex] Given Differential equation is, [tex]\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{xy}{ \sqrt{ {x}^{2} – 4 }} [/tex] To solve this Differential equation, we use method of separated the variable. The given Differential equation can be rewritten as [tex]\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{x}{ \sqrt{ {x}^{2} – 4 }} \times y[/tex] [tex]\rm :\longmapsto\:\dfrac{dy}{y} = \dfrac{x}{ \sqrt{ {x}^{2} – 4 }}dx[/tex] On integrating both sides, we get [tex]\rm :\longmapsto\:\displaystyle\int\tt \dfrac{dy}{y} =\displaystyle\int\tt \dfrac{x}{ \sqrt{ {x}^{2} – 4 }}dx[/tex] We know, [tex]\boxed{ \sf{ \: \displaystyle\int\tt \frac{1}{x}dx = logx + c}}[/tex] So, using this [tex]\rm :\longmapsto\:logy =\dfrac{1}{2} \displaystyle\int\tt \dfrac{2x}{ \sqrt{ {x}^{2} – 4 }}dx[/tex] We know, [tex]\boxed{ \sf{ \: \displaystyle\int\tt \frac{f'(x)}{ \sqrt{f(x)} } \: dx = 2 \sqrt{f(x)} + c}} [/tex] and [tex]\rm :\longmapsto\:\dfrac{d}{dx}( {x}^{2} – 4) = 2x[/tex] So, [tex]\rm :\longmapsto\:logy =\dfrac{1}{2} \times 2 \sqrt{ {x}^{2} – 4 } + c[/tex] [tex]\rm :\longmapsto\:logy = \sqrt{ {x}^{2} – 4 } + c[/tex] Let’s solve one more example of same type :- Solve the differential equation :- [tex]\rm :\longmapsto\:x \sqrt{1 + {y}^{2} } dx = y \sqrt{1 + {x}^{2} }dx[/tex] Solution :- By using the method of variable separation, we get [tex]\rm :\longmapsto\:\dfrac{x}{ \sqrt{1 + {x}^{2} } } dx = \dfrac{y}{ \sqrt{1 + {y}^{2} } } dy[/tex] On integrating both sides, we get [tex]\rm :\longmapsto\:\displaystyle\int\tt \dfrac{x}{ \sqrt{1 + {x}^{2} } } dx =\displaystyle\int\tt \dfrac{y}{ \sqrt{1 + {y}^{2} } } dy[/tex] Now, multiply by 2 on both sides, [tex]\rm :\longmapsto\:\displaystyle\int\tt \dfrac{2x}{ \sqrt{1 + {x}^{2} } } dx =\displaystyle\int\tt \dfrac{2y}{ \sqrt{1 + {y}^{2} } } dy[/tex] We know, [tex]\boxed{ \sf{ \: \displaystyle\int\tt \frac{f'(x)}{ \sqrt{f(x)} } \: dx = 2 \sqrt{f(x)} + c}} [/tex] and [tex]\rm :\longmapsto\:\dfrac{d}{dx}( {x}^{2} + 1) = 2x[/tex] So, using this, we have [tex]\rm :\longmapsto\:2 \sqrt{ {x}^{2} + 1 } = 2 \sqrt{ {y}^{2} + 1} + 2c[/tex] [tex]\rm :\longmapsto\:\sqrt{ {x}^{2} + 1 } = \sqrt{ {y}^{2} + 1} + c[/tex] Let’s solve one more problem now!! Solve the differential equation :- [tex]\rm :\longmapsto\:tany \: {sec}^{2}x \: dx \: = \: tanx \: {sec}^{2} y \: dy[/tex] Solution :- By method of variable separation, we have [tex]\rm :\longmapsto\:\dfrac{ {sec}^{2}x }{tanx}dx = \dfrac{ {sec}^{2} y}{tany} dy[/tex] On integrating both sides, we get [tex]\rm :\longmapsto\:\displaystyle\int\tt \dfrac{ {sec}^{2}x }{tanx}dx =\displaystyle\int\tt \dfrac{ {sec}^{2} y}{tany} dy[/tex] We know, [tex]\boxed{ \sf{ \: \dfrac{f'(x)}{f(x)}dx = logf(x) + c}}[/tex] and [tex]\boxed{ \sf{ \: \dfrac{d}{dx}tanx = {sec}^{2} x}}[/tex] So, using this we get [tex]\rm :\longmapsto\:log \: tanx =log \: tany + logc[/tex] [tex]\rm :\longmapsto\:log \: tanx =log( \: c \: tany )[/tex] [tex]\bf\implies \:tanx = c \: tany[/tex] Reply
Answer: -4xy/(x^2-4)^2 Step-by-step explanation: dy/dx=xy/root x^2-4 1/y. dy/dx= x/root x^2-4 Solve it you will get your answer if I do any mistake then please forgive me becoz I’m in 11th now.. Reply
[tex]\large\underline{\sf{Solution-}}[/tex]
Given Differential equation is,
[tex]\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{xy}{ \sqrt{ {x}^{2} – 4 }} [/tex]
To solve this Differential equation, we use method of separated the variable.
The given Differential equation can be rewritten as
[tex]\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{x}{ \sqrt{ {x}^{2} – 4 }} \times y[/tex]
[tex]\rm :\longmapsto\:\dfrac{dy}{y} = \dfrac{x}{ \sqrt{ {x}^{2} – 4 }}dx[/tex]
On integrating both sides, we get
[tex]\rm :\longmapsto\:\displaystyle\int\tt \dfrac{dy}{y} =\displaystyle\int\tt \dfrac{x}{ \sqrt{ {x}^{2} – 4 }}dx[/tex]
We know,
[tex]\boxed{ \sf{ \: \displaystyle\int\tt \frac{1}{x}dx = logx + c}}[/tex]
So, using this
[tex]\rm :\longmapsto\:logy =\dfrac{1}{2} \displaystyle\int\tt \dfrac{2x}{ \sqrt{ {x}^{2} – 4 }}dx[/tex]
We know,
[tex]\boxed{ \sf{ \: \displaystyle\int\tt \frac{f'(x)}{ \sqrt{f(x)} } \: dx = 2 \sqrt{f(x)} + c}} [/tex]
and
[tex]\rm :\longmapsto\:\dfrac{d}{dx}( {x}^{2} – 4) = 2x[/tex]
So,
[tex]\rm :\longmapsto\:logy =\dfrac{1}{2} \times 2 \sqrt{ {x}^{2} – 4 } + c[/tex]
[tex]\rm :\longmapsto\:logy = \sqrt{ {x}^{2} – 4 } + c[/tex]
Let’s solve one more example of same type :-
Solve the differential equation :-
[tex]\rm :\longmapsto\:x \sqrt{1 + {y}^{2} } dx = y \sqrt{1 + {x}^{2} }dx[/tex]
Solution :-
By using the method of variable separation, we get
[tex]\rm :\longmapsto\:\dfrac{x}{ \sqrt{1 + {x}^{2} } } dx = \dfrac{y}{ \sqrt{1 + {y}^{2} } } dy[/tex]
On integrating both sides, we get
[tex]\rm :\longmapsto\:\displaystyle\int\tt \dfrac{x}{ \sqrt{1 + {x}^{2} } } dx =\displaystyle\int\tt \dfrac{y}{ \sqrt{1 + {y}^{2} } } dy[/tex]
Now, multiply by 2 on both sides,
[tex]\rm :\longmapsto\:\displaystyle\int\tt \dfrac{2x}{ \sqrt{1 + {x}^{2} } } dx =\displaystyle\int\tt \dfrac{2y}{ \sqrt{1 + {y}^{2} } } dy[/tex]
We know,
[tex]\boxed{ \sf{ \: \displaystyle\int\tt \frac{f'(x)}{ \sqrt{f(x)} } \: dx = 2 \sqrt{f(x)} + c}} [/tex]
and
[tex]\rm :\longmapsto\:\dfrac{d}{dx}( {x}^{2} + 1) = 2x[/tex]
So, using this, we have
[tex]\rm :\longmapsto\:2 \sqrt{ {x}^{2} + 1 } = 2 \sqrt{ {y}^{2} + 1} + 2c[/tex]
[tex]\rm :\longmapsto\:\sqrt{ {x}^{2} + 1 } = \sqrt{ {y}^{2} + 1} + c[/tex]
Let’s solve one more problem now!!
Solve the differential equation :-
[tex]\rm :\longmapsto\:tany \: {sec}^{2}x \: dx \: = \: tanx \: {sec}^{2} y \: dy[/tex]
Solution :-
By method of variable separation, we have
[tex]\rm :\longmapsto\:\dfrac{ {sec}^{2}x }{tanx}dx = \dfrac{ {sec}^{2} y}{tany} dy[/tex]
On integrating both sides, we get
[tex]\rm :\longmapsto\:\displaystyle\int\tt \dfrac{ {sec}^{2}x }{tanx}dx =\displaystyle\int\tt \dfrac{ {sec}^{2} y}{tany} dy[/tex]
We know,
[tex]\boxed{ \sf{ \: \dfrac{f'(x)}{f(x)}dx = logf(x) + c}}[/tex]
and
[tex]\boxed{ \sf{ \: \dfrac{d}{dx}tanx = {sec}^{2} x}}[/tex]
So, using this we get
[tex]\rm :\longmapsto\:log \: tanx =log \: tany + logc[/tex]
[tex]\rm :\longmapsto\:log \: tanx =log( \: c \: tany )[/tex]
[tex]\bf\implies \:tanx = c \: tany[/tex]
Answer:
-4xy/(x^2-4)^2
Step-by-step explanation:
dy/dx=xy/root x^2-4
1/y. dy/dx= x/root x^2-4
Solve it you will get your answer
if I do any mistake then please forgive me becoz I’m in 11th now..