Solve the equation by Cramer’s Rule 3x + 3y – z = 11 2x + y – 2z = 9 4x + 3y + 2z = 25 [tex]\large\underline{\bf{Solution-}}[/tex] The matrix form of the above equation is Let us assume that [tex]\rm :\longmapsto\:\begin{gathered}\sf A=\left[\begin{array}{ccc}3&3& – 1\\2&1&-2\\4&3&2\end{array}\right]\end{gathered}[/tex] [tex]\rm :\longmapsto\:\begin{gathered}\sf B=\left[\begin{array}{c}11\\9\\25\end{array}\right]\end{gathered}[/tex] [tex]\rm :\longmapsto\:\begin{gathered}\sf X=\left[\begin{array}{c}x\\y\\z\end{array}\right]\end{gathered}[/tex] So that, [tex]\bf\implies \:AX = B[/tex] Consider, [tex]\rm :\longmapsto\: |A| = \: \begin{gathered}\sf \left | \begin{array}{ccc}3&3&- 1\\2&1& – 2\\4&3&2\end{array}\right | \end{gathered}[/tex] [tex]\rm \: \: = \: 3(2 + 6) – 3(4 + 8) – 1(6 – 4)[/tex] [tex]\rm \: \: = \: 3(8) – 3(12) – 1(2)[/tex] [tex]\rm \: \: = \: 24 – 36 – 2[/tex] [tex]\rm \: \: = \: 24 – 38[/tex] [tex]\rm \: \: = \: – 14[/tex] [tex]\bf\implies \:|A| = – 14 \ne \: 0[/tex] Hence, System of equations is consistent having unique solution. Consider, [tex]\rm :\longmapsto\:D_1 = \: \begin{gathered}\sf \left | \begin{array}{ccc}11&3&- 1\\9&1& – 2\\25&3&2\end{array}\right | \end{gathered}[/tex] [tex]\rm \: \: = \: 11(2 + 6) – 3(18 + 50) – 1(27 – 25)[/tex] [tex]\rm \: \: = \: 11(8) – 3(68) – 1(2)[/tex] [tex]\rm \: \: = \: 88 – 204 – 2[/tex] [tex]\rm \: \: = \: 88 – 206[/tex] [tex]\rm \: \: = \: – 118[/tex] [tex]\bf\implies \:D_1 = – 118[/tex] Consider, [tex]\rm :\longmapsto\: D_2 = \: \begin{gathered}\sf \left | \begin{array}{ccc}3&11&- 1\\2&9& – 2\\4&25&2\end{array}\right | \end{gathered}[/tex] [tex]\rm \: \: = \: 3(18 + 50) – 11(4 + 8) – 1(50 – 36)[/tex] [tex]\rm \: \: = \: 3(68) – 11(12) – 1(14)[/tex] [tex]\rm \: \: = \: 204 – 132 – 14[/tex] [tex]\rm \: \: = \: 58[/tex] [tex]\bf\implies \:D_2 = 58[/tex] Consider, [tex]\rm :\longmapsto\: D_3 = \: \begin{gathered}\sf \left | \begin{array}{ccc}3&3&11\\2&1& 9\\4&3&25\end{array}\right | \end{gathered}[/tex] [tex]\rm \: \: = \: 3(25 – 27) – 3(50 – 36) + 11(6 – 4)[/tex] [tex]\rm \: \: = \: 3( – 2) – 3(14) + 11(2)[/tex] [tex]\rm \: \: = \: – 6 – 42 + 22[/tex] [tex]\rm \: \: = \: – 48 + 22[/tex] [tex]\rm \: \: = \: – 26[/tex] [tex]\bf\implies \:D_3 = – 26[/tex] Now, We know that [tex]\rm :\longmapsto\:x = \dfrac{D_1}{|A|} = \dfrac{ – 118}{ – 14} = \dfrac{59}{7} [/tex] [tex]\rm :\longmapsto\:y = \dfrac{D_2}{|A|} = \dfrac{58}{ – 14} = – \dfrac{29}{7} [/tex] [tex]\rm :\longmapsto\:z = \dfrac{D_3}{|A|} = \dfrac{ – 26}{ – 14} = \dfrac{13}{7} [/tex] Reply
✵[tex]\textbf\red{Given:}[/tex]✵ [tex]\mathsf{x+y+z=6}[/tex] [tex]\mathsf{3x+3y+z=12}[/tex] [tex]\mathsf{2x+3y+2z=14}[/tex] [tex]\textbf\red{To find:}[/tex] [tex]\textsf{Solution\: of \:the\: given\: system \:of\: equations \:by \:Cramer’s \:rule}[/tex] [tex]\textbf\red{Solution:}[/tex] [tex]\begin{gathered}\mathsf{\triangle=\left|\begin{array}{ccc}1&1&1\\3&3&1\\2&3&2\end{array}\right|}\end{gathered} [/tex] [tex]\mathsf{\triangle=1(6-3)-1(6-2)+1(9-6)}[/tex] [tex]\mathsf{\triangle=3-4+3}[/tex] [tex]\mathsf{\triangle=2}[/tex] [tex]⟹ \begin{gathered}\mathsf{{\triangle}_x=\left|\begin{array}{ccc}6&1&1\\12&3&1\\14&3&2\end{array}\right|}\end{gathered} [/tex] [tex]\mathsf{{\triangle}_x=6(6-3)-1(24-14)+1(36-42)}[/tex] [tex]\mathsf{{\triangle}_x=18-10-6}[/tex] [tex]\mathsf{{\triangle}_x=2}[/tex] [tex]\begin{gathered}\mathsf{{\triangle}_y=\left|\begin{array}{ccc}1&6&1\\3&12&1\\2&14&2\end{array}\right|}\end{gathered} [/tex] [tex]\mathsf{{\triangle}_y=1(24-14)-6(6-2)+1(42-24)}[/tex] [tex]\mathsf{{\triangle}_y=10-24+18}[/tex] [tex]\mathsf{{\triangle}_y=4}[/tex] [tex]\mathsf{{\triangle}_z=1(42-36)-1(42-24)+6(9-6)}[/tex] [tex]\mathsf{{\triangle}_z=6-18+18}[/tex] [tex]\mathsf{{\triangle}_z=6}[/tex] [tex]\textsf{By Cramer’s rule}[/tex] [tex]\mathsf{x=\dfrac{\triangle_x}{\triangle}}[/tex] [tex]\mathsf{x=\dfrac{2}{2}=1}[/tex] [tex]\mathsf{y=\dfrac{\triangle_y}{\triangle}}[/tex] [tex]→\mathsf{y=\dfrac{4}{2}=2}[/tex] [tex]→\mathsf{z=\dfrac{\triangle_z}{\triangle}} [/tex] [tex]→\mathsf{z=\dfrac{6}{2}=3}[/tex] ➪[tex]\therefore\textsf{The solution is x=1, y=2 and z=3}[/tex] Reply
Solve the equation by Cramer’s Rule
3x + 3y – z = 11
2x + y – 2z = 9
4x + 3y + 2z = 25
[tex]\large\underline{\bf{Solution-}}[/tex]
The matrix form of the above equation is
Let us assume that
[tex]\rm :\longmapsto\:\begin{gathered}\sf A=\left[\begin{array}{ccc}3&3& – 1\\2&1&-2\\4&3&2\end{array}\right]\end{gathered}[/tex]
[tex]\rm :\longmapsto\:\begin{gathered}\sf B=\left[\begin{array}{c}11\\9\\25\end{array}\right]\end{gathered}[/tex]
[tex]\rm :\longmapsto\:\begin{gathered}\sf X=\left[\begin{array}{c}x\\y\\z\end{array}\right]\end{gathered}[/tex]
So that,
[tex]\bf\implies \:AX = B[/tex]
Consider,
[tex]\rm :\longmapsto\: |A| = \: \begin{gathered}\sf \left | \begin{array}{ccc}3&3&- 1\\2&1& – 2\\4&3&2\end{array}\right | \end{gathered}[/tex]
[tex]\rm \: \: = \: 3(2 + 6) – 3(4 + 8) – 1(6 – 4)[/tex]
[tex]\rm \: \: = \: 3(8) – 3(12) – 1(2)[/tex]
[tex]\rm \: \: = \: 24 – 36 – 2[/tex]
[tex]\rm \: \: = \: 24 – 38[/tex]
[tex]\rm \: \: = \: – 14[/tex]
[tex]\bf\implies \:|A| = – 14 \ne \: 0[/tex]
Hence,
System of equations is consistent having unique solution.
Consider,
[tex]\rm :\longmapsto\:D_1 = \: \begin{gathered}\sf \left | \begin{array}{ccc}11&3&- 1\\9&1& – 2\\25&3&2\end{array}\right | \end{gathered}[/tex]
[tex]\rm \: \: = \: 11(2 + 6) – 3(18 + 50) – 1(27 – 25)[/tex]
[tex]\rm \: \: = \: 11(8) – 3(68) – 1(2)[/tex]
[tex]\rm \: \: = \: 88 – 204 – 2[/tex]
[tex]\rm \: \: = \: 88 – 206[/tex]
[tex]\rm \: \: = \: – 118[/tex]
[tex]\bf\implies \:D_1 = – 118[/tex]
Consider,
[tex]\rm :\longmapsto\: D_2 = \: \begin{gathered}\sf \left | \begin{array}{ccc}3&11&- 1\\2&9& – 2\\4&25&2\end{array}\right | \end{gathered}[/tex]
[tex]\rm \: \: = \: 3(18 + 50) – 11(4 + 8) – 1(50 – 36)[/tex]
[tex]\rm \: \: = \: 3(68) – 11(12) – 1(14)[/tex]
[tex]\rm \: \: = \: 204 – 132 – 14[/tex]
[tex]\rm \: \: = \: 58[/tex]
[tex]\bf\implies \:D_2 = 58[/tex]
Consider,
[tex]\rm :\longmapsto\: D_3 = \: \begin{gathered}\sf \left | \begin{array}{ccc}3&3&11\\2&1& 9\\4&3&25\end{array}\right | \end{gathered}[/tex]
[tex]\rm \: \: = \: 3(25 – 27) – 3(50 – 36) + 11(6 – 4)[/tex]
[tex]\rm \: \: = \: 3( – 2) – 3(14) + 11(2)[/tex]
[tex]\rm \: \: = \: – 6 – 42 + 22[/tex]
[tex]\rm \: \: = \: – 48 + 22[/tex]
[tex]\rm \: \: = \: – 26[/tex]
[tex]\bf\implies \:D_3 = – 26[/tex]
Now,
We know that
[tex]\rm :\longmapsto\:x = \dfrac{D_1}{|A|} = \dfrac{ – 118}{ – 14} = \dfrac{59}{7} [/tex]
[tex]\rm :\longmapsto\:y = \dfrac{D_2}{|A|} = \dfrac{58}{ – 14} = – \dfrac{29}{7} [/tex]
[tex]\rm :\longmapsto\:z = \dfrac{D_3}{|A|} = \dfrac{ – 26}{ – 14} = \dfrac{13}{7} [/tex]
✵[tex]\textbf\red{Given:}[/tex]✵
[tex]\mathsf{x+y+z=6}[/tex]
[tex]\mathsf{3x+3y+z=12}[/tex]
[tex]\mathsf{2x+3y+2z=14}[/tex]
[tex]\textbf\red{To find:}[/tex]
[tex]\textsf{Solution\: of \:the\: given\: system \:of\: equations \:by \:Cramer’s \:rule}[/tex]
[tex]\textbf\red{Solution:}[/tex]
[tex]\begin{gathered}\mathsf{\triangle=\left|\begin{array}{ccc}1&1&1\\3&3&1\\2&3&2\end{array}\right|}\end{gathered} [/tex]
[tex]\mathsf{\triangle=1(6-3)-1(6-2)+1(9-6)}[/tex]
[tex]\mathsf{\triangle=3-4+3}[/tex]
[tex]\mathsf{\triangle=2}[/tex]
[tex]⟹ \begin{gathered}\mathsf{{\triangle}_x=\left|\begin{array}{ccc}6&1&1\\12&3&1\\14&3&2\end{array}\right|}\end{gathered} [/tex]
[tex]\mathsf{{\triangle}_x=6(6-3)-1(24-14)+1(36-42)}[/tex]
[tex]\mathsf{{\triangle}_x=18-10-6}[/tex]
[tex]\mathsf{{\triangle}_x=2}[/tex]
[tex]\begin{gathered}\mathsf{{\triangle}_y=\left|\begin{array}{ccc}1&6&1\\3&12&1\\2&14&2\end{array}\right|}\end{gathered} [/tex]
[tex]\mathsf{{\triangle}_y=1(24-14)-6(6-2)+1(42-24)}[/tex]
[tex]\mathsf{{\triangle}_y=10-24+18}[/tex]
[tex]\mathsf{{\triangle}_y=4}[/tex]
[tex]\mathsf{{\triangle}_z=1(42-36)-1(42-24)+6(9-6)}[/tex]
[tex]\mathsf{{\triangle}_z=6-18+18}[/tex]
[tex]\mathsf{{\triangle}_z=6}[/tex]
[tex]\textsf{By Cramer’s rule}[/tex]
[tex]\mathsf{x=\dfrac{\triangle_x}{\triangle}}[/tex]
[tex]\mathsf{x=\dfrac{2}{2}=1}[/tex]
[tex]\mathsf{y=\dfrac{\triangle_y}{\triangle}}[/tex]
[tex]→\mathsf{y=\dfrac{4}{2}=2}[/tex]
[tex]→\mathsf{z=\dfrac{\triangle_z}{\triangle}} [/tex]
[tex]→\mathsf{z=\dfrac{6}{2}=3}[/tex]
➪[tex]\therefore\textsf{The solution is x=1, y=2 and z=3}[/tex]