(Sine-cose)

(Sine+cose)

+

(Sine+cose) 2

(Sine-cose) (2Sin²0-1)​

(Sine-cose)

(Sine+cose)

+

(Sine+cose) 2

(Sine-cose) (2Sin²0-1)​

About the author
Camila

1 thought on “(Sine-cose)<br /><br />(Sine+cose)<br /><br />+<br /><br />(Sine+cose) 2<br /><br />(Sine-cose) (2Sin²0-1)​”

  1. Step-by-step explanation:

    sinθ+cosθ=

    2

    cosθ

    To prove:- cosθ+sinθ=

    2

    sinθ

    Proof:-

    sinθ+cosθ=

    2

    cosθ

    Squaring both sides, we get

    sin

    2

    θ+cos

    2

    θ+2sinθcosθ=2cos

    2

    θ

    ⇒sin

    2

    θ−cos

    2

    θ+2sinθcosθ=0

    Subtracting 2sin

    2

    θ both sides, we have

    −sin

    2

    θ−cos

    2

    θ+2sinθcosθ=−2sin

    2

    θ

    sin

    2

    θ+cos

    2

    θ−2sinθcosθ=2sin

    2

    θ

    (cosθ−sinθ)

    2

    =2sin

    2

    θ

    ⇒cosθ−sinθ=

    2

    sinθ

    Hence proved.

    Reply

Leave a Comment