Simplify the given expression.
4(-3p^3q^3 + 2p^2q^2- pq^2 + 4) – 14(-p^3q^3– 2p^2q^2– pq^2 +1)

please fast ​

By Mia

Simplify the given expression.
4(-3p^3q^3 + 2p^2q^2- pq^2 + 4) – 14(-p^3q^3– 2p^2q^2– pq^2 +1)

please fast ​

About the author
Mia

1 thought on “Simplify the given expression.<br />4(-3p^3q^3 + 2p^2q^2- pq^2 + 4) – 14(-p^3q^3– 2p^2q^2– pq^2 +1)<br /><br />please fast ​”

  1. Answer:

    STEP

    1

    :

    Equation at the end of step 1

    (4•((((0-((3•(p3))•(q3)))+((2•(p2))•(q2)))-(p•(q2)))+4))-(14•((((0-((p3)•(q3)))-(2p2•q2))-pq2)+1))

    STEP

    2

    :

    STEP

    3

    :

    Pulling out like terms

    3.1 Pull out like factors :

    -p3q3 – 2p2q2 – pq2 + 1 =

    -1 • (p3q3 + 2p2q2 + pq2 – 1)

    Checking for a perfect cube :

    3.2 p3q3 + 2p2q2 + pq2 – 1 is not a perfect cube

    Equation at the end of step

    3

    :

    (4•((((0-((3•(p3))•(q3)))+((2•(p2))•(q2)))-(p•(q2)))+4))–14•(p3q3+2p2q2+pq2-1)

    STEP

    4

    :

    Equation at the end of step

    4

    :

    (4•((((0-((3•(p3))•(q3)))+(2p2•q2))-pq2)+4))–14•(p3q3+2p2q2+pq2-1)

    STEP

    5

    :

    Equation at the end of step

    5

    :

    (4•((((0-(3p3•q3))+2p2q2)-pq2)+4))–14•(p3q3+2p2q2+pq2-1)

    STEP

    6

    :

    Checking for a perfect cube

    6.1 -3p3q3+2p2q2-pq2+4 is not a perfect cube

    Equation at the end of step

    6

    :

    4•(-3p3q3+2p2q2-pq2+4)–14•(p3q3+2p2q2+pq2-1)

    STEP

    7

    :

    STEP

    8

    :

    Pulling out like terms

    8.1 Pull out like factors :

    2p3q3 + 36p2q2 + 10pq2 + 2 =

    2 • (p3q3 + 18p2q2 + 5pq2 + 1)

    Checking for a perfect cube :

    8.2 p3q3 + 18p2q2 + 5pq2 + 1 is not a perfect cube

    Final result :

    2 • (p3q3 + 18p2q2 + 5pq2 + 1)

    Reply

Leave a Comment