[tex]\boxed {\underline {\mathbb {CORRECT \: QUESTION:-}}}[/tex] Show that (x+5) is a factor of the polynomial f(x)=x³+x²+3x+115 [tex]\boxed {\underline {\mathbb {GIVEN:-}}}[/tex] (x+5) polynomial F(x) = x³+x²+3x+115 [tex]\boxed {\underline {\mathbb {TO\:PROVE:-}}}[/tex] (x+5) is a factor of the polynomial F(x) = x³+x²+3x+115 [tex]\boxed {\underline {\mathbb {THINGS\:TO\:ASSUME:-}}}[/tex] [tex]x=-5[/tex] [tex]\boxed {\underline {\mathbb {SOLUTION:-}}}[/tex] If (x+5) makes F(x)=0 than it implies that it is a factor of [tex]x^{3}+x^{2}+3x+115[/tex] Therefore x+5=0 Hence [tex]\boxed{x=-5}[/tex] [brought 5 to R.H.S. thus getting x=-5] Now as we got x value of let’s put in [tex]F(5)=x^{3}+x^{2}+3x+115[/tex] [tex]=5^{3}+5^{2}+3(5)+115\\=(-5 \times -5 \times -5) + (-5 \times -5 )+(3 \times -5 )+115\\=-125+25-15+115\\=-125-15+25+115\\=-140+140\\\boxed{F(x)=0}[/tex] hence as f(x)=0 which means that (x+5) is a factor of the polynomial F(x) = x³+x²+3x+115 ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ Reply
Answer: If (x+5) is a factor of f (x) then x+5=0:x=-5:should satisfy f (x) Source putting -5 in f (x)… (-5)³+(-5)²+3×(-5)+115 =-125+25-15+115 =0 Hence proved. Reply
[tex]\boxed {\underline {\mathbb {CORRECT \: QUESTION:-}}}[/tex]
Show that (x+5) is a factor of the polynomial f(x)=x³+x²+3x+115
[tex]\boxed {\underline {\mathbb {GIVEN:-}}}[/tex]
(x+5)
polynomial F(x) = x³+x²+3x+115
[tex]\boxed {\underline {\mathbb {TO\:PROVE:-}}}[/tex]
(x+5) is a factor of the polynomial F(x) = x³+x²+3x+115
[tex]\boxed {\underline {\mathbb {THINGS\:TO\:ASSUME:-}}}[/tex]
[tex]x=-5[/tex]
[tex]\boxed {\underline {\mathbb {SOLUTION:-}}}[/tex]
If (x+5) makes F(x)=0 than it implies that it is a factor of [tex]x^{3}+x^{2}+3x+115[/tex]
Therefore x+5=0
Hence [tex]\boxed{x=-5}[/tex] [brought 5 to R.H.S. thus getting x=-5]
Now as we got x value of let’s put in [tex]F(5)=x^{3}+x^{2}+3x+115[/tex]
[tex]=5^{3}+5^{2}+3(5)+115\\=(-5 \times -5 \times -5) + (-5 \times -5 )+(3 \times -5 )+115\\=-125+25-15+115\\=-125-15+25+115\\=-140+140\\\boxed{F(x)=0}[/tex]
hence as f(x)=0 which means that (x+5) is a factor of the polynomial F(x) = x³+x²+3x+115
⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔
Answer:
If (x+5) is a factor of f (x) then x+5=0:x=-5:should satisfy f (x)
Source putting -5 in f (x)…
(-5)³+(-5)²+3×(-5)+115
=-125+25-15+115
=0
Hence proved.