Show that (x-5) is a factor of the polynomial F(x) = x³+x²+3x+115​

Show that (x-5) is a factor of the polynomial F(x) = x³+x²+3x+115​

About the author
Harper

2 thoughts on “Show that (x-5) is a factor of the polynomial F(x) = x³+x²+3x+115​”

  1. [tex]\boxed {\underline {\mathbb {CORRECT \: QUESTION:-}}}[/tex]

    Show that (x+5) is a factor of the polynomial f(x)=x³+x²+3x+115

    [tex]\boxed {\underline {\mathbb {GIVEN:-}}}[/tex]

    (x+5)

    polynomial F(x) = x³+x²+3x+115​

    [tex]\boxed {\underline {\mathbb {TO\:PROVE:-}}}[/tex]

    (x+5) is a factor of the polynomial F(x) = x³+x²+3x+115​

    [tex]\boxed {\underline {\mathbb {THINGS\:TO\:ASSUME:-}}}[/tex]

    [tex]x=-5[/tex]

    [tex]\boxed {\underline {\mathbb {SOLUTION:-}}}[/tex]

    If (x+5) makes F(x)=0 than it implies that it is a factor of [tex]x^{3}+x^{2}+3x+115[/tex]
    Therefore x+5=0

    Hence [tex]\boxed{x=-5}[/tex] [brought 5 to R.H.S. thus getting x=-5]

    Now as we got x value of let’s put in [tex]F(5)=x^{3}+x^{2}+3x+115[/tex]

    [tex]=5^{3}+5^{2}+3(5)+115\\=(-5 \times -5 \times -5) + (-5 \times -5 )+(3 \times -5 )+115\\=-125+25-15+115\\=-125-15+25+115\\=-140+140\\\boxed{F(x)=0}[/tex]

    hence as f(x)=0 which means that (x+5) is a factor of the polynomial F(x) = x³+x²+3x+115​

    ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

    Reply
  2. Answer:

    If (x+5) is a factor of f (x) then x+5=0:x=-5:should satisfy f (x)

    Source putting -5 in f (x)…

    (-5)³+(-5)²+3×(-5)+115

    =-125+25-15+115

    =0

    Hence proved.

    Reply

Leave a Comment