What is the difference between amounts for 2 years and 3 years for Rs. 500 at 10% compound interest?

1️⃣ ₹.665.50

Question

What is the difference between amounts for 2 years and 3 years for Rs. 500 at 10% compound interest?

1️⃣ ₹.665.50
2️⃣ ₹ 60
3️⃣ ₹ 60.50
4️⃣ ₹ 605​

in progress 0
Kylie 4 weeks 2021-09-18T22:38:37+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-09-18T22:39:47+00:00

    Answer:

    I don’t understand question

    0
    2021-09-18T22:40:24+00:00

    Formula of CI and A:-

     {\pmb {\red{CI = P( 1 +  \frac{r}{100} )^n - P }}}

    { \pmb { \red{Amount = P ( 1 + \frac{r}{100} )^n }}}

    Given,

     \sf \: P = ₹ 500 \\ \sf R = 10  \: \%

     \sf \: T_1 = 2 \: years

     \sf \: T_2 = 3  \: years

     \rm  \underline\blue{1st Amount = P ( 1 + \frac{r}{100} )^n}

     \implies500 ( 1 + \frac{10}{100} )^2  \\  \\  \implies 500( \frac{100 + 10}{100} ) ^{2}  \\  \\  \implies \: 500( \frac{110}{100} ) ^{2}  \\  \\  \implies \: 5 \cancel{00} \times  \frac{11 \cancel0}{1 \cancel0 \cancel0}  \times  \frac{11 \cancel0}{1 \cancel{00}} \\  \\  \implies5 \times 11 \times 11 \\  \\  \therefore \:  ₹605

     \rm  \underline\blue{2nd Amount = P ( 1 + \frac{r}{100} )^n}

    \implies500 ( 1 + \frac{10}{100} )^3  \\  \\  \implies 500( \frac{100 + 10}{100} ) ^{3}  \\  \\  \implies \: 500( \frac{110}{100} ) ^{3}  \\  \\  \implies \: 5 \cancel{00} \times  \frac{11 \cancel0}{1 \cancel0 \cancel0}  \times  \frac{11 \cancel0}{1 \cancel{00}} \:  \times \:  \frac{11 \cancel0}{10 \cancel0}   \\  \\  \implies5 \times 11 \times 11 \times  \frac{11}{10}  \\  \\  \therefore \:  ₹ \frac{6655}{10}  = ₹665.5

    Henceforth,

    Difference = 2nd Amount – 1st Amount

    ⟹ ₹ 665.5 – ₹ 605

    \therefore ₹60.5

    So, Option 3️⃣ ₹60.50 \bf\red{ [Ans]}

    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

    Note :-

    • CI = Compound Interest
    • A = Amount

    \large \fbox \red {Hope \: it \: helps \: you}

Leave an answer

Browse

9:3-3+1x3-4:2 = ? ( )