m 1
Let A = 0 0 1 then the rank of the matrix A+ A2 is
0 0​

By Jade

m 1
Let A = 0 0 1 then the rank of the matrix A+ A2 is
0 0​

About the author
Jade

1 thought on “m 1<br />Let A = 0 0 1 then the rank of the matrix A+ A2 is<br />0 0​”

  1. SOLUTION

    GIVEN

    [tex]A= \displaystyle\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} [/tex]

    TO DETERMINE

    The rank of the matrix

    [tex]\sf{A + {A}^{2} }[/tex]

    CONCEPT TO BE IMPLEMENTED

    Let A be a non zero matrix of order m × n. The Rank of A is defined to be the greatest positive integer r such that A has at least one non-zero minor of order r

    For a non-zero m × n matrix A

    0 < rank of A ≤ min {m, n}

    For a non-zero matrix A of order n,

    rank of A < , or = n according as A is singular or non-singular

    EVALUATION

    Here it is given that

    [tex]A= \displaystyle\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} [/tex]

    So

    [tex]{A}^{2} = \displaystyle\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} .\displaystyle\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} = \displaystyle\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} [/tex]

    Now

    [tex]\sf{A + {A}^{2} }[/tex]

    [tex] = \displaystyle\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} + \displaystyle\begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} [/tex]

    [tex] = \displaystyle\begin{pmatrix} 2 & 0\\ 0 & 2 \end{pmatrix} [/tex]

    Now

    [tex]\sf{det(A + {A}^{2} ) = 4 – 0 = 4 \ne0}[/tex]

    [tex]\sf{ \therefore \: \: A + {A}^{2} \: \: is \:a \: 2 \times 2 \: non \: singular \: matrix }[/tex]

    So rank of the matrix [tex]\sf{A + {A}^{2} }[/tex] is 2

    ━━━━━━━━━━━━━━━━

    Learn more from Brainly :-

    1. A is a square matrix of order 3 having a row of zeros, then the determinant of A is

    https://brainly.in/question/28455441

    2. If [1 2 3] B = [34], then the order of the matrix B is

    https://brainly.in/question/9030091

    Reply

Leave a Comment