Find the value of x for equation x+y=5 if y = 3


x=3


x=2


x=-3

Find the value of x for equation x+y=5 if y = 3

x=3

x=2

x=-3

x=-1​

About the author
Kinsley

2 thoughts on “Find the value of x for equation x+y=5 if y = 3<br /><br /><br />x=3 <br /><br /><br />x=2 <br /><br /><br />x=-3<br /><br /><br”

  1. Answer :-

    • Option 2 is correct.
    • The value of x is 2.

    Given :-

    • The value of y is 3.

    To find :-

    • The value of x for equation x + y = 5.

    Step-by-step explanation :-

    • In this question, we see that our equation contains two variables x and y, but the value of y has been given to us. So we only have to find the value of x by solving the equation. We will substitute the value of y in the equation to solve it.

    ——————-

    Here,

    [tex] \overline{\boxed{ \bf y = 3.}}[/tex]

    Now let’s solve the equation!

    [tex] \longmapsto\sf x + y = 5[/tex]

    Substituting the value of y,

    [tex] \longmapsto\sf x + 3 = 5[/tex]

    Transposing 3 from LHS to RHS, changing it’s sign,

    [tex] \longmapsto\sf x = 5 – 3[/tex]

    Subtracting 3 from 5,

    [tex] \longmapsto\underline{ \boxed{\sf x = 2}}[/tex]

    • Hence, x = 2.

    ________________________________

    V E R I F I C A T I O N

    • To check our answer, let’s put 2 in the place of x and see whether LHS = RHS.

    LHS

    [tex]\leadsto \rm x + 3[/tex]

    Substituting the value of x,

    [tex]\leadsto\rm 2 + 3[/tex]

    Adding the numbers,

    [tex]\leadsto5[/tex]

    RHS

    [tex]\leadsto5[/tex]

    ________________________________

    LHS = RHS.

    Hence verified!

    Reply
  2. [tex] \bigstar \;\underline\boldsymbol{According\;to\;the\;given\;Question:} \\ [/tex]

    ❍Let us consider that y = 3,

    Therefore,Applying the value of y in the equation:

    [tex]:\implies\sf{x + y = 5} \\ \\ :\implies\sf{x + 3 = 5} \\ \\ :\implies\sf{x = 5 – 3} \\ \\ :\implies\sf{x = 2 \: \: \: \: \: \: \:}\\ \\ \sf{ \therefore \: the \: value \: of \: x \: is \:2} \\ \\ \sf{option(2) \: x = 2 \: is \:correct. }[/tex]

    Reply

Leave a Comment