2p q and
are like terms.
a) 29 p
b) – 2pq
c) – 5p?q?
d) None of these​

Question

2p q and
are like terms.
a) 29 p
b) – 2pq
c) – 5p?q?
d) None of these​

in progress 0
Eloise 2 months 2021-07-27T15:41:04+00:00 1 Answers 0 views 0

Answers ( )

    0
    2021-07-27T15:42:58+00:00

    Step-by-step explanation:

    c options is correct

    \orange{\bold{\underbrace{\overbrace{❥Question᎓}}}}

    Integrate the function

    \huge\green\tt\frac{ \sqrt{tanx} }{sinxcosx}}

    \huge\tt\frac{ \sqrt{tanx} }{sinxcosx}

    ㅤ ㅤ ㅤ ㅤ ㅤ

    \huge\tt \frac{ \sqrt{tanx} }{sinxcosx \times \frac{cosx}{cosx}}

    ㅤ ㅤ ㅤ ㅤ ㅤ

    \huge\tt \frac{ \sqrt{tanx} }{sinx \times \frac{ {cos}^{2} x}{cosx}} ㅤ ㅤ ㅤ

    \huge\tt\frac{ \sqrt{tanx} }{ {cos}^{2} x \times \frac{sinx}{cosx} }

    ㅤ ㅤ ㅤ ㅤ ㅤ

    \huge\tt\frac{ \sqrt{tanx} }{ {cos}^{2}x \times tanx }

    \huge\tt {tan}^{ \frac{1}{2} - 1 } \times \frac{1}{ {cos}^{2} x}ㅤ ㅤ ㅤ ㅤ ㅤ

    \huge\tt {(tan)}^{ - \frac{ 1}{2} } \times \frac{1}{ {cos}^{2}x } = {(tanx)}^{ - \frac{1}{2} } \times {sec}^{2} x⇛(tan)

    ㅤ ㅤ ㅤ ㅤ ㅤ

    \huge\tt {(tan)}^{ - \frac{ 1}{2} } \times \frac{1}{ {cos}^{2}x } = ∫ {(tanx)}^{ - \frac{1}{2} } \times {sec}^{2} x \times dx⇛(tan)

    ㅤ ㅤ ㅤ ㅤ ㅤ

    \bold\blue{☛\: Let tanx=t}

    \bold\blue{☛ \:Differentiating \: both \: sides \: w.r.t.x}

    ㅤ ㅤ ㅤ ㅤ ㅤ

    \huge\tt {sec}^{2} x = \frac{dt}{dx}

    \huge\tt{dx \frac{dt}{ {sec}^{2}x }}

    ㅤ ㅤ ㅤ ㅤ ㅤ

    \huge\tt∴∫ {(tanx)}^{ - \frac{1}{2} } \times {sec}^{2} x \times dx

    \huge\tt ∫ {(t)}^{ - \frac{1}{2} } \times {sec}^{2} x \times \frac{dt}{ {sec}^{2}x }

    \huge\tt ∫ {t}^{ - \frac{1}{2} }ㅤ ㅤ

    \huge\tt\frac{ {t}^{ - \frac{1}{2} + 1} }{ - \frac{1}{2} + 1 }

    \huge\tt \frac{ {t}^{ \frac{1}{2} } }{ \frac{1}{2} } + c = 2 {t}^{ \frac{1}{2} } + c = 2 \sqrt{t}

    \huge2 \sqrt{t} + c = 2 \sqrt{tanx}

    ╚════════════════════════

Leave an answer

Browse

9:3-3+1x3-4:2 = ? ( )