Question~

[tex] \bold {If A, B \: and \: C \: are \: interior \: angles \: of \: a \: triangle \: ABC \: then

Question~

[tex] \bold {If A, B \: and \: C \: are \: interior \: angles \: of \: a \: triangle \: ABC \: then \: show \: that \: \sin (\frac{B +C }{2} ) = \cos \: \frac{A}{2} }[/tex]
Don’t spam!!​

About the author
Skylar

2 thoughts on “Question~<br /><br />[tex] \bold {If A, B \: and \: C \: are \: interior \: angles \: of \: a \: triangle \: ABC \: then”

  1. Answer♡:

    Given △ABC

    We know that sum of three angles of a triangle is 180

    Hence ∠A+∠B+∠C=180°

    or A+B+C=180°

    B+C=180° −A

    Multiply both sides by 1/2

    1/2 (B+C)= 1/2 (180° −A)

    1)2 (B+C)=90° − A/2 …(1)

    Now 1/2 (B+C)

    Taking sine of this angle

    sin( B+C/2) [B+C/2 =90° − A/2 ]

    sin(90° − A/2 )

    cos A/2 [sin(90°−θ)=cosθ]

    Hence sin( B+C/2 )=cos A/2

    proved

    Itzgirl45 ❤️

    Reply

Leave a Comment