question:if α and ß are the zeros of the polynomial 2x² + 5x +1 find the value of α+ ß + αß. About the author Katherine
Answer: [tex]\huge \huge \bf {\: \pmb{Question}}[/tex] Q. if α and ß are the zeros of the polynomial 2x² + 5x +1 find the value of α+ ß + αß. Given:– α and ß are the zeros of the polynomial 2x² + 5x +1 Required to find :– the value of α+ ß + αß. [tex]\huge \huge \bf {\: \pmb{ \green{solution}}}[/tex] equation → 2x² + 5x +1 then, a = 2 , b = 5 and c = 1 we know that α+ ß = [tex]\frac{-b}{a}[/tex] = [tex]\frac{-5}{2}[/tex] we know that α×ß = [tex]\frac{c}{a}[/tex] = [tex]\frac{1}{2}[/tex] now, α+ ß + αß = ( [tex]\frac{-5}{2}[/tex] ) + [tex]\frac{1}{2}[/tex] = [tex]\frac{-5+1}{2}[/tex] = [tex]\frac{-4}{2}[/tex] = -2 thus, the value of α+ ß + αß is -2 Reply
[tex]\bf\underline{\underline{solution:-}}[/tex] Here α+ ß = -5/2 and αß = 1/2 Now, α + ß + αß = -5/2 + 1/2 = [tex] \frac{ – 5 + 1}{2} [/tex] [tex] – \frac{4}{2} [/tex] [tex] – 2[/tex] Hence the value of α + ß + αß is -2. Reply
Answer:
[tex]\huge \huge \bf {\: \pmb{Question}}[/tex]
Q. if α and ß are the zeros of the polynomial 2x² + 5x +1 find the value of α+ ß + αß.
Given:–
Required to find :–
[tex]\huge \huge \bf {\: \pmb{ \green{solution}}}[/tex]
equation → 2x² + 5x +1
then, a = 2 , b = 5 and c = 1
we know that α+ ß = [tex]\frac{-b}{a}[/tex]
= [tex]\frac{-5}{2}[/tex]
we know that α×ß = [tex]\frac{c}{a}[/tex]
= [tex]\frac{1}{2}[/tex]
now, α+ ß + αß
= ( [tex]\frac{-5}{2}[/tex] ) + [tex]\frac{1}{2}[/tex]
= [tex]\frac{-5+1}{2}[/tex]
= [tex]\frac{-4}{2}[/tex]
= -2
thus, the value of α+ ß + αß is -2
[tex]\bf\underline{\underline{solution:-}}[/tex]
Here α+ ß = -5/2 and αß = 1/2
Now,
α + ß + αß = -5/2 + 1/2
=
[tex] \frac{ – 5 + 1}{2} [/tex]
[tex] – \frac{4}{2} [/tex]
[tex] – 2[/tex]
Hence the value of α + ß + αß is -2.