Q8.Solve the following problem:
{1/(9+√3)}+{1/3+√2)}​

Q8.Solve the following problem:
{1/(9+√3)}+{1/3+√2)}​

About the author
Madeline

2 thoughts on “Q8.Solve the following problem:<br /> {1/(9+√3)}+{1/3+√2)}​”

  1. ɢɪᴠᴇɴ:

    [tex] \frac{1}{9 + \sqrt{3} } \: \: , \: \: \frac{1}{3 + \sqrt{2} } [/tex]

    ᴛᴏ ꜰɪɴᴅ:

    Addition

    ꜱᴏʟᴜᴛɪᴏɴ:

    [tex]→ \frac{1}{9 + \sqrt{3} } = \frac{1 }{9 + \sqrt{3} } \times \frac{9 – \sqrt{3} }{9 – \sqrt{3} } \\ \\ → \frac{1}{9 + \sqrt{3} } = \frac{9 – \sqrt{3} }{ {(9)}^{2} – {( \sqrt{3}) }^{2} } \: \: \: \: \: \: \: \: \: \: \\ \\ → \frac{1}{9 + \sqrt{3} } = \frac{9 – \sqrt{3} }{81 – 3} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ → \frac{1}{9 + \sqrt{3} } = \frac{ 9 – \sqrt{3} }{ 78 } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ [/tex]

    [tex]→ \frac{1}{3 + \sqrt{2} } = \frac{1}{3 + \sqrt{2} } \times \frac{3 – \sqrt{2} }{3 – \sqrt{2} } \\ \\ → \frac{1}{3 + \sqrt{2} } = \frac{3 – \sqrt{2} }{ {(3)}^{2} – {( \sqrt{2} )}^{2} } \: \: \: \: \: \: \: \: \: \: \: \\ \\ → \frac{1}{3 + \sqrt{2} } = \: \: \frac{3 – \sqrt{2} }{9 – 2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ → \frac{1}{3 + \sqrt{2} } = \frac{3 – \sqrt{2} }{7} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\[/tex]

    [tex] → \ \frac{1}{9 + \sqrt{3} } \: \: + \: \: \frac{1}{3 + \sqrt{2} } \: \: \: \: \: \: \: \: \\ \\ = \frac{9 – \sqrt{3} }{78} + \frac{3 – \sqrt{2} }{7} \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ = \frac{63 – 7 \sqrt{3} +234 – 78 \sqrt{2} }{546} \\ \\ = \frac{297 – 7 \sqrt{3} – 78 \sqrt{2} }{546 } \: \: \: \: \: \: \: \: \: \: [/tex]

    Reply

Leave a Comment