Q3. The value of 3 cos θ + 4 sin θ lies in :

(a) [-5, 5]
(b) (-5, 5)
(c) (-5, 5]
(d) None of these​

Q3. The value of 3 cos θ + 4 sin θ lies in :

(a) [-5, 5]
(b) (-5, 5)
(c) (-5, 5]
(d) None of these​

About the author
Kinsley

2 thoughts on “Q3. The value of 3 cos θ + 4 sin θ lies in :<br /><br />(a) [-5, 5]<br />(b) (-5, 5)<br />(c) (-5, 5]<br />(d) None of these​”

  1. ANSWER:

    To Find:

    • Value of 3 cos θ + 4 sin θ lies in?

    Solution:

    To find where the value of 3 cos θ + 4 sin θ lies in, we will find the maximum and minimum values of the expression.

    So,

    We know that, Maximum Value of (a cos θ + b sin θ) is,

    √(a²+b²)

    Here, a = 3 and b = 4. So,

    Maximum Value of 3 cos θ + 4 sin θ

    √(3²+4²) ⇒ √(9+16) ⇒ √(25) ⇒ +5 —–(1)

    And,

    We know that, Minimum Value of (a cos θ + b sin θ) is,

    ⇒ -√(a²+b²)

    Here, a = 3 and b = 4. So,

    Minimum Value of 3 cos θ + 4 sin θ

    ⇒ -√(3²+4²) ⇒ -√(9+16) ⇒ -√(25) ⇒ -5 —–(2)

    So, the value of 3 cos θ + 4 sin θ lies in,

    ⇒ [Minimum Value , Maximum Value]

    (We are using square brackets[] because, both the maximum and minimum values are inclusive.)

    From (1) & (2),

    Hence, the value of 3 cos θ + 4 sin θ lies in,

    ⇒ [-5 , 5]

    (a) [-5, 5] is the answer.

    Formula Used:

    • Maximum Value of (a cos θ + b sin θ) is, √(a²+b²)
    • Minimum Value of (a cos θ + b sin θ) is, -√(a²+b²)
    Reply
  2. Step-by-step explanation:

    We know that the maximum value of a cos θ + b sin θ is √(a2 + b2).

    Substituting a = 3, b = 4,

    √(a2 + b2) = √(9 + 16) = √25 = 5

    Therefore, the maximum value of 3 cos θ + 4 sin θ is 5.

    Was this answer helpful?

    Reply

Leave a Comment