Q3. The value of 3 cos θ + 4 sin θ lies in : (a) [-5, 5](b) (-5, 5)(c) (-5, 5](d) None of these About the author Kinsley
ANSWER: To Find: Value of 3 cos θ + 4 sin θ lies in? Solution: To find where the value of 3 cos θ + 4 sin θ lies in, we will find the maximum and minimum values of the expression. So, We know that, Maximum Value of (a cos θ + b sin θ) is, ⇒ √(a²+b²) Here, a = 3 and b = 4. So, Maximum Value of 3 cos θ + 4 sin θ ⇒ √(3²+4²) ⇒ √(9+16) ⇒ √(25) ⇒ +5 —–(1) And, We know that, Minimum Value of (a cos θ + b sin θ) is, ⇒ -√(a²+b²) Here, a = 3 and b = 4. So, Minimum Value of 3 cos θ + 4 sin θ ⇒ -√(3²+4²) ⇒ -√(9+16) ⇒ -√(25) ⇒ -5 —–(2) So, the value of 3 cos θ + 4 sin θ lies in, ⇒ [Minimum Value , Maximum Value] (We are using square brackets[] because, both the maximum and minimum values are inclusive.) From (1) & (2), Hence, the value of 3 cos θ + 4 sin θ lies in, ⇒ [-5 , 5] (a) [-5, 5] is the answer. Formula Used: Maximum Value of (a cos θ + b sin θ) is, √(a²+b²) Minimum Value of (a cos θ + b sin θ) is, -√(a²+b²) Reply
Step-by-step explanation: We know that the maximum value of a cos θ + b sin θ is √(a2 + b2). Substituting a = 3, b = 4, √(a2 + b2) = √(9 + 16) = √25 = 5 Therefore, the maximum value of 3 cos θ + 4 sin θ is 5. Was this answer helpful? Reply
ANSWER:
To Find:
Solution:
To find where the value of 3 cos θ + 4 sin θ lies in, we will find the maximum and minimum values of the expression.
So,
We know that, Maximum Value of (a cos θ + b sin θ) is,
⇒ √(a²+b²)
Here, a = 3 and b = 4. So,
Maximum Value of 3 cos θ + 4 sin θ
⇒ √(3²+4²) ⇒ √(9+16) ⇒ √(25) ⇒ +5 —–(1)
And,
We know that, Minimum Value of (a cos θ + b sin θ) is,
⇒ -√(a²+b²)
Here, a = 3 and b = 4. So,
Minimum Value of 3 cos θ + 4 sin θ
⇒ -√(3²+4²) ⇒ -√(9+16) ⇒ -√(25) ⇒ -5 —–(2)
So, the value of 3 cos θ + 4 sin θ lies in,
⇒ [Minimum Value , Maximum Value]
(We are using square brackets[] because, both the maximum and minimum values are inclusive.)
From (1) & (2),
Hence, the value of 3 cos θ + 4 sin θ lies in,
⇒ [-5 , 5]
(a) [-5, 5] is the answer.
Formula Used:
Step-by-step explanation:
We know that the maximum value of a cos θ + b sin θ is √(a2 + b2).
Substituting a = 3, b = 4,
√(a2 + b2) = √(9 + 16) = √25 = 5
Therefore, the maximum value of 3 cos θ + 4 sin θ is 5.
Was this answer helpful?