Q.14 The sum of three consecutive multiples of 9 is 324. Find these multiples. {please explain also} About the author Iris
Question:- The sum of three consecutive multiples of 9 is 324. Find these multiples. To find:- The three consecutive multiples of 9 Solution:- Let the consecutive multiples be x , x+1 and x+2 We are given that the sum of multiples is 324 As they are the multiples of 9 the equation formed will be:– [tex] \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \red \leadsto \: { {\boxed{ \bf \: 9 \times x + 9(x + 1) + 9(x + 2) = 324}}}[/tex] [tex] \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \pink \leadsto \bf \: \: 9x + 9x + 9 + 9x + 18 = 324[/tex] [tex] \\ \: \: \: \: \: \: \: \: \: \orange \leadsto \bf \: \: 27x + 27 = 324[/tex] [tex] \\ \: \: \: \: \: \: \: \: \green \leadsto \bf \: 27x = 324 -27[/tex] [tex] \\ \: \: \: \: \: \: \: \: \blue \leadsto \bf \: 27x = 297[/tex] [tex] \\ \: \: \: \: \: \: \: \: {\color{navy}{ \leadsto }} \: \bf \: 27x = 297[/tex] [tex] \\ \: \: \: \: \: \: \: \: { \color{brown}{\leadsto}} \: \bf \: x = \frac{297}{27} [/tex] [tex]\\ \: \: \: \: \: \: \: \: { \color{yellow}{\leadsto}} \: \bf \: x = 11[/tex] Therefore the required value for x is 11. Now the multiples would be 11 x+1= 11+1=12 x+2 =11+2=13 The multiples are 11,12,13 ━━━━━━━━━━━━━━━━━━━━━━━━ [tex]{ \huge{ \underline{ \underline{ \boxed{ \mathfrak{ \color{goldenrod}{Verification : – }}}}}}}[/tex] [tex] \\ \: \: \: \: \: \: \: \: \mapsto \: (9 \times 11) +( 9 \times 12) + (9 + 13)[/tex] [tex] \\ \: \: \: \: \: \: \: \: \: \: \: \mapsto \: 99 + 108 + 117[/tex] [tex] \\ \: \: \: \: \: \: \: \: \: \mapsto \: 324[/tex] [tex] \large{ \boxed{ \mathfrak{ \pink{Hence \: verified }}}}[/tex] [tex] \color{goldenrod}{━━━━━━━━━━━━━━━━━━━━━━━━━━━━━}[/tex] Reply
Question:-
To find:-
Solution:-
[tex] \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \red \leadsto \: { {\boxed{ \bf \: 9 \times x + 9(x + 1) + 9(x + 2) = 324}}}[/tex]
[tex] \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \pink \leadsto \bf \: \: 9x + 9x + 9 + 9x + 18 = 324[/tex]
[tex] \\ \: \: \: \: \: \: \: \: \: \orange \leadsto \bf \: \: 27x + 27 = 324[/tex]
[tex] \\ \: \: \: \: \: \: \: \: \green \leadsto \bf \: 27x = 324 -27[/tex]
[tex] \\ \: \: \: \: \: \: \: \: \blue \leadsto \bf \: 27x = 297[/tex]
[tex] \\ \: \: \: \: \: \: \: \: {\color{navy}{ \leadsto }} \: \bf \: 27x = 297[/tex]
[tex] \\ \: \: \: \: \: \: \: \: { \color{brown}{\leadsto}} \: \bf \: x = \frac{297}{27} [/tex]
[tex]\\ \: \: \: \: \: \: \: \: { \color{yellow}{\leadsto}} \: \bf \: x = 11[/tex]
Now the multiples would be
The multiples are 11,12,13
━━━━━━━━━━━━━━━━━━━━━━━━
[tex]{ \huge{ \underline{ \underline{ \boxed{ \mathfrak{ \color{goldenrod}{Verification : – }}}}}}}[/tex]
[tex] \\ \: \: \: \: \: \: \: \: \mapsto \: (9 \times 11) +( 9 \times 12) + (9 + 13)[/tex]
[tex] \\ \: \: \: \: \: \: \: \: \: \: \: \mapsto \: 99 + 108 + 117[/tex]
[tex] \\ \: \: \: \: \: \: \: \: \: \mapsto \: 324[/tex]
[tex] \large{ \boxed{ \mathfrak{ \pink{Hence \: verified }}}}[/tex]
[tex] \color{goldenrod}{━━━━━━━━━━━━━━━━━━━━━━━━━━━━━}[/tex]
Answer:
thank u for points
thank u again