prove that :
[tex] \frac{ \cos \alpha }{1 – \sin \alpha } = \frac{1 + \sin \alpha }{ \cos\alpha } [/tex]

prove that :
[tex] \frac{ \cos \alpha }{1 – \sin \alpha } = \frac{1 + \sin \alpha }{ \cos\alpha } [/tex]

About the author
Kaylee

1 thought on “prove that :<br />[tex] \frac{ \cos \alpha }{1 – \sin \alpha } = \frac{1 + \sin \alpha }{ \cos\alpha } [/tex]<br />​”

  1. Step-by-step explanation:

    from LHS

    cosα /1 -sinα

    multipling by 1+sinα in numerator and denomenator

    • ∴ cosα (1+sinα) / (1-sin²α)
    • cosα (1+sinα )/cos²α
    • 1+sinα/cosα RHS

    LHS = RHS proved

    Reply

Leave a Comment