[tex] \huge \mathcal \colorbox{lightpink}{{Solution:}}[/tex] [tex]L:H:S = \sin0(1 + \tan0 ) + \cos0(1 + \cot0) [/tex] [tex] = \sin0(1 + \frac{ \sin0 }{cos0} ) + cos0(1 + \frac{ \cos0 }{sin0} )[/tex] [tex] = (sin0 + cos0)( \frac{sin0}{cos0} + \frac{cos0}{sin0} )[/tex] [tex] = \frac{(sin0 + cos0)}{sin0 \: cos0} ( {sin}^{2} 0 + {cos}^{2}0) [/tex] [tex] = ( \frac{1}{cos0} + \frac{1}{sin0} )[/tex] [tex]sec0 + cosec0 = R:H:S(proved)[/tex] ❥ the above is the answer of your question ❥ hope that’s helps you Reply
Step-by-step explanation: L.H.S. = sin θ (1 – tan θ) – cos θ (1- cot θ) = sin θ (1 – sin θ/cos θ) – cos θ (1- cos θ/sinθ) = sin θ{(cosθ -sinθ )/cos θ} – cos θ{(sinθ-cosθ )/sinθ} =(cos θ – sin θ) (sinθ/cos θ – cos θ/sinθ) = (cos θ – sin θ)/cos θ sin θ = cosec θ – sec θ = R.H.S. Reply
[tex] \huge \mathcal \colorbox{lightpink}{{Solution:}}[/tex]
[tex]L:H:S = \sin0(1 + \tan0 ) + \cos0(1 + \cot0) [/tex]
[tex] = \sin0(1 + \frac{ \sin0 }{cos0} ) + cos0(1 + \frac{ \cos0 }{sin0} )[/tex]
[tex] = (sin0 + cos0)( \frac{sin0}{cos0} + \frac{cos0}{sin0} )[/tex]
[tex] = \frac{(sin0 + cos0)}{sin0 \: cos0} ( {sin}^{2} 0 + {cos}^{2}0) [/tex]
[tex] = ( \frac{1}{cos0} + \frac{1}{sin0} )[/tex]
[tex]sec0 + cosec0 = R:H:S(proved)[/tex]
❥ the above is the answer of your question
❥ hope that’s helps you
Step-by-step explanation:
L.H.S. = sin θ (1 – tan θ) – cos θ (1- cot θ)
= sin θ (1 – sin θ/cos θ) – cos θ (1- cos θ/sinθ)
= sin θ{(cosθ -sinθ )/cos θ} – cos θ{(sinθ-cosθ )/sinθ}
=(cos θ – sin θ) (sinθ/cos θ – cos θ/sinθ)
= (cos θ – sin θ)/cos θ sin θ
= cosec θ – sec θ
= R.H.S.