Prove that sin θ ( 1 – tan θ ) − cos θ ( 1 − cot θ ) = cosec θ − sec θ

Prove that sin θ ( 1 – tan θ ) − cos θ ( 1 − cot θ ) = cosec θ − sec θ

About the author
Harper

2 thoughts on “Prove that sin θ ( 1 – tan θ ) − cos θ ( 1 − cot θ ) = cosec θ − sec θ”

  1. [tex] \huge \mathcal \colorbox{lightpink}{{Solution:}}[/tex]

    [tex]L:H:S = \sin0(1 + \tan0 ) + \cos0(1 + \cot0) [/tex]

    [tex] = \sin0(1 + \frac{ \sin0 }{cos0} ) + cos0(1 + \frac{ \cos0 }{sin0} )[/tex]

    [tex] = (sin0 + cos0)( \frac{sin0}{cos0} + \frac{cos0}{sin0} )[/tex]

    [tex] = \frac{(sin0 + cos0)}{sin0 \: cos0} ( {sin}^{2} 0 + {cos}^{2}0) [/tex]

    [tex] = ( \frac{1}{cos0} + \frac{1}{sin0} )[/tex]

    [tex]sec0 + cosec0 = R:H:S(proved)[/tex]

    ❥ the above is the answer of your question

    ❥ hope that’s helps you

    Reply
  2. Step-by-step explanation:

    L.H.S. = sin θ (1 – tan θ) – cos θ (1- cot θ)

    = sin θ (1 – sin θ/cos θ) – cos θ (1- cos θ/sinθ)

    = sin θ{(cosθ -sinθ )/cos θ} – cos θ{(sinθ-cosθ )/sinθ}

    =(cos θ – sin θ) (sinθ/cos θ – cos θ/sinθ)

    = (cos θ – sin θ)/cos θ sin θ

    = cosec θ – sec θ

    = R.H.S.

    Reply

Leave a Comment