prove that Cosec theta + cot theta = 1/cosec theta – cot theta

prove that Cosec theta + cot theta = 1/cosec theta – cot theta

About the author
Savannah

2 thoughts on “prove that Cosec theta + cot theta = 1/cosec theta – cot theta”

  1. Answer:

    LHS=

    cotA+cosA

    cotA−cosA

    =

    sinA

    cosA

    +cosA

    sinA

    cosA

    −cosA

    =

    cosA

    cosA

    ×

    cosecA+1

    cosecA−1

    =

    cosecA+1

    cosecA−1

    =RHS

    Reply
  2. Answer:

    Answer

    cosecθ+cotθ=

    cosecθ−cotθ

    1

    solving LHS.

    cosecθ+cotθ = (on rationalizing)

    (cosecθ−cotθ)

    (cosecθ+cotθ)(cosecθ−cotθ)

    cosecθ−cotθ

    cosec

    2

    θ−cot

    2

    θ

    =

    sin

    2

    θ

    1

    sin

    2

    θ

    cos

    2

    θ

    [∵cosecθ=

    sinθ

    1

    cotθ=

    sinθ

    cosecθ

    ]

    cosecθ−cotθ

    sin

    2

    θ

    1−cos

    2

    θ

    =

    cosecθ−cotθ

    1

    [∵1−cos

    2

    θ=sin

    2

    θ]

    $$\because L.H.S =\frac{1}{cosec\theta-cot\theta} = RHS.

    Step-by-step explanation:

    answer verified by topper

    Reply

Leave a Comment