Prove that:
cos theta/1- tan theta+ Sin theta/ 1-cot theta

Prove that:
cos theta/1- tan theta+ Sin theta/ 1-cot theta

About the author
Kennedy

1 thought on “Prove that:<br />cos theta/1- tan theta+ Sin theta/ 1-cot theta<br />​”

  1. Answer:

    Let I

    n

    =∫

    (secx+tanx)

    n

    sec

    2

    x

    dx (for n>1)

    ∴I

    n

    =∫

    (

    1+tan

    2

    x

    +tanx)

    n

    sec

    2

    x

    dx (as sec

    2

    θ=1+tan

    2

    θ)

    Now, let t=tanx⇒dt=sec

    2

    xdx, we then have

    I

    n

    =∫

    (

    1+t

    2

    +t)

    n

    1

    dt

    Making a hyperbolic substitution t=sinhy⟹dt=coshydy , we have

    I

    n

    =∫

    (

    1+sinh

    2

    y

    +sinhy)

    n

    coshy

    dy

    Now, as sinhy=

    2

    e

    y

    −e

    −y

    and 1+sinh

    2

    y=cosh

    2

    y, we get

    I

    n

    =

    2

    1

    e

    ny

    e

    y

    +e

    −y

    dy

    ∴I

    n

    =

    2

    1

    ∫[e

    −(n−1)y

    +e

    −(n+1)y

    ]dy

    ∴I

    n

    =−

    2(n−1)

    e

    −(n−1)y

    2(n+1)

    e

    −(n+1)y

    +C

    Now, re-substitute coshy−sinhy=e

    −y

    and sinhy=tanx, coshy=secx, we have

    I

    n

    =−

    2(n−1)

    (secx−tanx)

    (n−1)

    2(n+1)

    (secx−tanx)

    (n+1)

    +C

    Applying the limits, we get

    I

    n

    =[−

    2(n−1)

    (secx−tanx)

    (n−1)

    2(n+1)

    (secx−tanx)

    (n+1)

    ]

    0

    π/2

    ∴I

    n

    =

    n

    2

    −1

    n

    (Note that lim

    x→∞

    secx−tanx=0)

    Hence, proved

    Reply

Leave a Comment