Prove that a
COSA
+
1t5inA
1 tsina
1
2 Seca
COSA​

Prove that a
COSA
+
1t5inA
1 tsina
1
2 Seca
COSA​

About the author
Amelia

2 thoughts on “Prove that a<br />COSA<br />+<br />1t5inA<br />1 tsina<br />1<br />2 Seca<br />COSA​”

  1. Step-by-step explanation:

    Let us start from the LHS

    Let us start from the LHS1-sinA/1+sinA

    Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get

    Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)

    Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)

    Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)=(1-SinA)²/ 1 -(Sin²A)

    Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)=(1-SinA)²/ 1 -(Sin²A)=(1-SinA)² /Cos² A

    Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)=(1-SinA)²/ 1 -(Sin²A)=(1-SinA)² /Cos² A=[ 1 -Sin²A = cos²A]

    Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)=(1-SinA)²/ 1 -(Sin²A)=(1-SinA)² /Cos² A=[ 1 -Sin²A = cos²A]=(1-SinA/CosA)²

    Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)=(1-SinA)²/ 1 -(Sin²A)=(1-SinA)² /Cos² A=[ 1 -Sin²A = cos²A]=(1-SinA/CosA)²=(1/CosA-SinA/CosA)²

    Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)=(1-SinA)²/ 1 -(Sin²A)=(1-SinA)² /Cos² A=[ 1 -Sin²A = cos²A]=(1-SinA/CosA)²=(1/CosA-SinA/CosA)²=(SecA-tanA)²

    Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)=(1-SinA)²/ 1 -(Sin²A)=(1-SinA)² /Cos² A=[ 1 -Sin²A = cos²A]=(1-SinA/CosA)²=(1/CosA-SinA/CosA)²=(SecA-tanA)²= RHS

    Let us start from the LHS1-sinA/1+sinAOn rationalising the denominator we get1-sinA (1-SinA) /1+sinA(1-SinA)=(1-SinA)²/ 1² -(Sin²A)=(1-SinA)²/ 1 -(Sin²A)=(1-SinA)² /Cos² A=[ 1 -Sin²A = cos²A]=(1-SinA/CosA)²=(1/CosA-SinA/CosA)²=(SecA-tanA)²= RHSHence proved

    Reply

Leave a Comment