*p²/4+p/3+ 1/9 हा विस्तार कोणत्या द्विपदीचा आहे?* 1️⃣ (p/2 + 1/3)²2️⃣ (p/2 – 1/3)²3️⃣ (p/4 + 1/9)²4️⃣ यांपैकी नाही About the author Cora
[tex]\textbf{Given:}[/tex] [tex]\mathsf{\dfrac{p^2}{4}+\dfrac{p}{3}+\dfrac{1}{9}}[/tex] [tex]\textbf{To simplify:}[/tex] [tex]\mathsf{\dfrac{p^2}{4}+\dfrac{p}{3}+\dfrac{1}{9}}[/tex] [tex]\textbf{Solution:}[/tex] [tex]\textsf{Consider,}[/tex] [tex]\mathsf{\dfrac{p^2}{4}+\dfrac{p}{3}+\dfrac{1}{9}}[/tex] [tex]\textsf{This can be written as}[/tex] [tex]\mathsf{=\left(\dfrac{p}{2}\right)^2+\dfrac{p}{3}+\left(\dfrac{1}{3}\right)^2}[/tex] [tex]\mathsf{=\left(\dfrac{p}{2}\right)^2+2{\times}\dfrac{p}{2}{\times}\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2}[/tex] [tex]\mathsf{Using\;the\;identity,}[/tex] [tex]\boxed{\mathsf{(a+b)^2=a^2+2ab+b^2}}[/tex] [tex]\mathsf{=\left(\dfrac{p}{2}+\dfrac{1}{3}\right)^2}[/tex] [tex]\implies\boxed{\mathsf{\dfrac{p^2}{4}+\dfrac{p}{3}+\dfrac{1}{9}=\left(\dfrac{p}{2}+\dfrac{1}{3}\right)^2}}[/tex] [tex]\textbf{Answer:}[/tex] [tex]\mathsf{Option\;(1)\;is\;correct}[/tex] Reply
[tex]\textbf{Given:}[/tex]
[tex]\mathsf{\dfrac{p^2}{4}+\dfrac{p}{3}+\dfrac{1}{9}}[/tex]
[tex]\textbf{To simplify:}[/tex]
[tex]\mathsf{\dfrac{p^2}{4}+\dfrac{p}{3}+\dfrac{1}{9}}[/tex]
[tex]\textbf{Solution:}[/tex]
[tex]\textsf{Consider,}[/tex]
[tex]\mathsf{\dfrac{p^2}{4}+\dfrac{p}{3}+\dfrac{1}{9}}[/tex]
[tex]\textsf{This can be written as}[/tex]
[tex]\mathsf{=\left(\dfrac{p}{2}\right)^2+\dfrac{p}{3}+\left(\dfrac{1}{3}\right)^2}[/tex]
[tex]\mathsf{=\left(\dfrac{p}{2}\right)^2+2{\times}\dfrac{p}{2}{\times}\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2}[/tex]
[tex]\mathsf{Using\;the\;identity,}[/tex]
[tex]\boxed{\mathsf{(a+b)^2=a^2+2ab+b^2}}[/tex]
[tex]\mathsf{=\left(\dfrac{p}{2}+\dfrac{1}{3}\right)^2}[/tex]
[tex]\implies\boxed{\mathsf{\dfrac{p^2}{4}+\dfrac{p}{3}+\dfrac{1}{9}=\left(\dfrac{p}{2}+\dfrac{1}{3}\right)^2}}[/tex]
[tex]\textbf{Answer:}[/tex]
[tex]\mathsf{Option\;(1)\;is\;correct}[/tex]