one of the exterior angles of a traingle is 125° and the interior opposite angles are in the ratio 2:3. find the angles of the tra

By Rose

one of the exterior angles of a traingle is 125° and the interior opposite angles are in the ratio 2:3. find the angles of the traingle​

About the author
Rose

2 thoughts on “one of the exterior angles of a traingle is 125° and the interior opposite angles are in the ratio 2:3. find the angles of the tra”

  1. hi here is your answer!

    Answer:

    The interior opposite angles are 50⁰ and 75⁰ respectively

    Step-by-step explanation:

    Let the interior opposite angles be 2x and 3x

    we know that, exterior angles = sum of opposite interior angles

    2x+3x=125

    5x=125

    x=125/5

    x=25

    substituting x value in 2x and 3x

    2x= 2(25) =50

    3x=3(25) = 75

    you can even check by adding 50+75=125

    i hope it helps.

    Reply
  2. Given: one of the exterior angles of a traingle is 125° and the interior opposite angles are in the ratio 2:3.

    To Find: the angles of the traingle respectively

    ⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

    ❒ Let the opposite interior angles in the triangle be 2x and 3x respectively

    [tex]{ \underline{ \bf{ \bigstar \: According \: to \: the \: question : }}}[/tex]

    • The measure of an exterior angle is 125°

    Now, Basing this let’s find the measure of the interior ACB

    We know that,

    • The sum of the measurements of a interior angle and it’s adjacent exterior angle equals 180°

    [tex] \leadsto \tt 125 \degree \: + \angle \: c = 180\degree \\ \\ \leadsto \tt \angle \: c = 180 – 125 \degree \: \: \: \\ \\ \leadsto \tt \angle \: c = { \blue{ \boxed{55\degree}}} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]

    • Now, let’s find the measurements of the other interior angles.

    [tex] \\ [/tex]

    [tex]{ \underline{ \frak{As \: we \: know \: that \dag}}} [/tex]

    • The sum of the measurements of all the interior angles in a triangle equal 180°

    [tex]{ \underline{ \bf{ \bigstar \:Framing \: an \: equation \: we \: get : }}}[/tex]

    [tex]{ : \implies} \sf \: 55 + 2x + 3x = 180 \\ \\ \\ { : \implies} \sf \: 55 + 5x = 180 \: \: \: \: \: \: \: \: \: \\ \\ \\ { : \implies} \sf \: 5x = 180 – 55 \: \: \: \: \: \: \: \: \\ \\ \\ { : \implies} \sf \: 5x = 125 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ { : \implies} \sf \: \: x = \cancel\frac{125}{5} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ { : \implies} \sf \: { \underline{ \pink{ \boxed{ \frak{x = 25}}}}} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]

    [tex] \\ [/tex]

    Now,

    • Let’s substitute the value of x and find the measurements of the angles.

    [tex] {\purple{\mapsto}} \tt \: angle \: 2x = 2(25) = 50 \degree \\ \\ {\purple{\mapsto}} \tt \: angle \: 3x = 3(25) = 75 \degree[/tex]

    [tex] \\ [/tex]

    [tex]{ \underline{ \bf{ \bigstar \: Verification : }}}[/tex]

    • Now let’s add all the angles and check weather they equal 180° or not.

    [tex]\leadsto \tt 55 + 75 + 50 = 180 \\ \\ \\ \leadsto \tt 130 + 50 = 180 \: \: \: \: \: \: \: \\ \\ \\ \leadsto \tt 180 = 180 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [/tex]

    • Hence verified..!!

    ⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

    Reply

Leave a Comment