obtain the inverse by using elementary row operation matrix is
9 5
2 7​

obtain the inverse by using elementary row operation matrix is
9 5
2 7​

About the author
Peyton

1 thought on “obtain the inverse by using elementary row operation matrix is<br />9 5<br />2 7​”

  1. [tex]\large\underline{\sf{Basic \: Concept – }}[/tex]

    Elementary Row Transformation Method :-

    • The elementary transformation method to find the inverse of a matrix.
    • To find the Inverse of a matrix, our goal is to convert the given matrix into an identity matrix.

    We can use three transformations:-

    • 1) Multiplying a row by a constant
    • 2) Adding a multiple of another row
    • 3) Swapping two rows

    Basically, in elementary transformation of matrices we try to find out the inverse of a given matrix, using two simple properties :

    • 1. A = A × I

    where I = Identity matrix

    • 2. A × B =I it implies that B is inverse of A.

    [tex]\large\underline{\bold{Solution-}}[/tex]

    [tex] \sf \: Let \: A \: = \: \begin{bmatrix} 9 & 5\\ 2 & 7\end{bmatrix}[/tex]

    [tex]\rm :\longmapsto\:A = IA[/tex]

    [tex]\rm :\longmapsto\: \: \begin{bmatrix} 9 & 5\\ 2 & 7\end{bmatrix} = \: \begin{bmatrix} 1 & 0\\ 0 & 1\end{bmatrix}A[/tex]

    [tex]\bf :\longmapsto\:OP \: R_1 \to \: R_1 – 4R_2[/tex]

    [tex]\rm :\longmapsto\: \: \begin{bmatrix} 1 & – 23\\ 2 & 7\end{bmatrix} = \: \begin{bmatrix} 1 & – 4\\ 0 & 1\end{bmatrix}A[/tex]

    [tex]\bf :\longmapsto\:OP \: R_2 \to \: R_2 – 2R_1[/tex]

    [tex]\rm :\longmapsto\: \: \begin{bmatrix} 1 & – 23\\ 0 & 53\end{bmatrix} = \: \begin{bmatrix} 1 & – 4\\ – 2 & 9\end{bmatrix}A[/tex]

    [tex] \bf :\longmapsto\:OP \: R_2 \to \: \dfrac{1}{53} R_2[/tex]

    [tex]\rm :\longmapsto\: \: \begin{bmatrix} 1 & – 23\\ 0 & 1\end{bmatrix} = \: \begin{bmatrix} 1 & – 4\\ – \dfrac{2}{53} & \dfrac{9}{53} \end{bmatrix}A[/tex]

    [tex]\bf :\longmapsto\:OP \: R_1 \to \: R_1 + 23R_2[/tex]

    [tex]\rm :\longmapsto\: \: \begin{bmatrix} 1 & 0\\ 0 & 1\end{bmatrix} = \: \begin{bmatrix} \dfrac{7}{53} & – \dfrac{5}{53} \\ – \dfrac{2}{53} & \dfrac{9}{53} \end{bmatrix}A[/tex]

    Hence,

    [tex]\bf :\longmapsto\: {A}^{ – 1} = \: \begin{bmatrix} \dfrac{7}{53} & – \dfrac{5}{53} \\ – \dfrac{2}{53} & \dfrac{9}{53} \end{bmatrix}[/tex]

    Reply

Leave a Comment